Skip to main content

Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Automatic neonatal brain tissue segmentation in preterm born infants is a prerequisite for evaluation of brain development. However, automatic segmentation is often hampered by motion artifacts caused by infant head movements during image acquisition. Methods have been developed to remove or minimize these artifacts during image reconstruction using frequency domain data. However, frequency domain data might not always be available. Hence, in this study we propose a method for removing motion artifacts from the already reconstructed MR scans. The method employs a generative adversarial network trained with a cycle consistency loss to transform slices affected by motion into slices without motion artifacts, and vice versa. In the experiments 40 T2-weighted coronal MR scans of preterm born infants imaged at 30 weeks postmenstrual age were used. All images contained slices affected by motion artifacts hampering automatic tissue segmentation. To evaluate whether correction allows more accurate image segmentation, the images were segmented into 8 tissue classes: cerebellum, myelinated white matter, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter, and extracerebral cerebrospinal fluid. Images corrected for motion and corresponding segmentations were qualitatively evaluated using 5-point Likert scale. Before the correction of motion artifacts, median image quality and quality of corresponding automatic segmentations were assigned grade 2 (poor) and 3 (moderate), respectively. After correction of motion artifacts, both improved to grades 3 and 4, respectively. The results indicate that correction of motion artifacts in the image space using the proposed approach allows accurate segmentation of brain tissue classes in slices affected by motion artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, D., Hill, D.L., Stoyle, P.N., Summers, P.E., Keevil, S.F.: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans. Med. imaging 16(6), 903–910 (1997)

    Article  Google Scholar 

  2. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1

    Chapter  Google Scholar 

  3. Duffy, B.A., et al.: Retrospective correction of motion artifact affected structural MRI images using deep learning of simulated motion (2018)

    Google Scholar 

  4. Godenschweger, F., et al.: Motion correction in MRI of the brain. Phys. Med. Biol. 61(5), R32 (2016)

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kostović, I., Jovanov-Milošević, N.: The development of cerebral connections during the first 20–45 weeks’ gestation. In: Seminars in Fetal and Neonatal Medicine, vol. 11, pp. 415–422. Elsevier (2006)

    Google Scholar 

  11. Pawar, K., Chen, Z., Shah, N.J., Egan, G.F.: Moconet: Motion correction in 3D MPRAGE images using a convolutional neural network approach. arXiv preprint arXiv:1807.10831 (2018)

  12. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  13. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khalili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalili, N., Turk, E., Zreik, M., Viergever, M.A., Benders, M.J.N.L., Išgum, I. (2019). Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics