Skip to main content

Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

In this paper, we propose a new weakly supervised 3D brain lesion segmentation approach using attentional representation learning. Our approach only requires image-level labels, and is able to produce accurate segmentation of the 3D lesion volumes. To achieve that, we design a novel dimensional independent attention mechanism on top of the Class Activation Maps (CAMs), which refines the 3D CAMs to obtain better estimates of the lesion volumes, without introducing significantly more trainable variables. The generated attentional CAMs are then used as a source of weak supervision signals to learn a representation model, which can reliably separate the voxels belong to the lesion volumes from those of the normal tissues. The proposed approach has been evaluated on the publicly available BraTS and ISLES datasets. We show with comprehensive experiments that our approach significantly outperforms the competing weakly-supervised methods in both initial lesion localization and the final segmentation, and is able to achieve comparable Dice scores in segmentation comparing to the fully supervised baselines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tensorflow. https://www.tensorflow.org. Accessed 01 Apr 2019

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  3. Cai, J., Lu, L., Harrison, A.P., Shi, X., Chen, P., Yang, L.: Iterative attention mining for weakly supervised thoracic disease pattern localization in chest x-rays. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 589–598. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_66

    Chapter  Google Scholar 

  4. Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46

    Chapter  Google Scholar 

  5. Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Computat. Math. Methods Med. 2015 (2015)

    Google Scholar 

  6. Hwang, S., Kim, H.-E.: Self-transfer learning for weakly supervised lesion localization. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 239–246. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_28

    Chapter  Google Scholar 

  7. Izadyyazdanabadi, M., et al.: Weakly-supervised learning-based feature localization for confocal laser endomicroscopy glioma images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 300–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_34

    Chapter  Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  9. Maier, O., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

  10. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. arXiv preprint arXiv:1812.04571 (2018)

  11. Porz, N., et al.: Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE 9(5), e96873 (2014)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Tseng, K.L., Lin, Y.L., Hsu, W., Huang, C.Y.: Joint sequence learning and cross-modality convolution for 3D biomedical segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6393–6400 (2017)

    Google Scholar 

  14. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  15. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, K., Du, B., Luo, M., Wen, H., Shen, Y., Feng, J. (2019). Weakly Supervised Brain Lesion Segmentation via Attentional Representation Learning. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics