Skip to main content

3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

Brain tumor segmentation plays a pivotal role in medical image processing. In this work, we aim to segment brain MRI volumes. 3D convolution neural networks (CNN) such as 3D U-Net [1] and V-Net [2] employing 3D convolutions to capture the correlation between adjacent slices have achieved impressive segmentation results. However, these 3D CNN architectures come with high computational overheads due to multiple layers of 3D convolutions, which may make these models prohibitive for practical large-scale applications. To this end, we propose a highly efficient 3D CNN to achieve real-time dense volumetric segmentation. The network leverages the 3D multi-fiber unit which consists of an ensemble of lightweight 3D convolutional networks to significantly reduce the computational cost. Moreover, 3D dilated convolutions are used to build multi-scale feature representation. Extensive experimental results on the BraTS-2018 challenge dataset show that the proposed architecture greatly reduces computation cost while maintaining high accuracy for brain tumor segmentation. The source code is available at https://github.com/China-LiuXiaopeng/BraTS-DMFNet.

C. Chen and X. Liu contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D Vision (3DV) (2016)

    Google Scholar 

  3. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint: arXiv:1811.02629 (2018)

  4. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Dou, Q., et al.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  7. Nuechterlein, N., Mehta, S.: 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 245–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_22

    Chapter  Google Scholar 

  8. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32

    Chapter  Google Scholar 

  9. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part I. LNCS, vol. 11205, pp. 364–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_22

    Chapter  Google Scholar 

  10. Qin, Y., et al.: Autofocus layer for semantic segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part III. LNCS, vol. 11072, pp. 603–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_69

    Chapter  Google Scholar 

  11. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., et al.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  12. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  13. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018)

    Google Scholar 

  14. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint: arXiv:1511.07122 (2015)

  15. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  16. Kao, P.-Y., Ngo, T., Zhang, A., Chen, J.W., Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 128–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_12

    Chapter  Google Scholar 

  17. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Liu, X., Ding, M., Zheng, J., Li, J. (2019). 3D Dilated Multi-fiber Network for Real-Time Brain Tumor Segmentation in MRI. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics