Skip to main content

RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

Magnetic resonance fingerprinting (MRF) is a relatively new imaging framework which allows rapid and simultaneous quantification of multiple tissue properties, such as T1 and T2 relaxation times, in one acquisition. To accelerate the data sampling in MRF, a variety of methods have been proposed to extract tissue properties from highly accelerated MRF signals. While these methods have demonstrated promising results, further improvement in the accuracy, especially for T2 quantification, is needed. In this paper, we present a novel deep learning approach, namely residual channel attention U-Net (RCA-U-Net), to perform the tissue quantification task in MRF. The RCA-U-Net combines the U-Net structure with residual channel attention blocks, to make the network focus on more informative features and produce better quantification results. In addition, we improved the preprocessing of MRF data by masking out the noisy signals in the background for improved quantification at tissue boundaries. Our experimental results on two in vivo brain datasets with different spatial resolutions demonstrate that the proposed method improves the accuracy of T2 quantification with MRF under high acceleration rates (i.e., 8 and 16) as compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting deep reconstruction network (drone). Magn. Reson. Med. 80(3), 885–894 (2018)

    Article  Google Scholar 

  2. Fang, Z., et al.: Deep learning for fast and spatially-constrained tissue quantification from highly-accelerated data in magnetic resonance fingerprinting. IEEE Trans. Med. Imaging (2019). https://doi.org/10.1109/TMI.2019.2899328

    Article  Google Scholar 

  3. Hoppe, E., et al.: Deep learning for magnetic resonance fingerprinting: accelerating the reconstruction of quantitative relaxation maps. In: Proceedings of the 26th Annual Meeting of ISMRM, Paris, France (2018)

    Google Scholar 

  4. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), pp. 1–15 (2015)

    Google Scholar 

  5. Ma, D., et al.: Magnetic resonance fingerprinting. Nature 495(7440), 187 (2013)

    Article  Google Scholar 

  6. McGivney, D.F., et al.: SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans. Med. Imaging 33(12), 2311–2322 (2014)

    Article  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH grant EB006733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Z., Chen, Y., Nie, D., Lin, W., Shen, D. (2019). RCA-U-Net: Residual Channel Attention U-Net for Fast Tissue Quantification in Magnetic Resonance Fingerprinting. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics