Skip to main content

Conditional Segmentation in Lieu of Image Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Classical pairwise image registration methods search for a spatial transformation that optimises a numerical measure that indicates how well a pair of moving and fixed images are aligned. Current learning-based registration methods have adopted the same paradigm and typically predict, for any new input image pair, dense correspondences in the form of a dense displacement field or parameters of a spatial transformation model. However, in many applications of registration, the spatial transformation itself is only required to propagate points or regions of interest (ROIs). In such cases, detailed pixel- or voxel-level correspondence within or outside of these ROIs often have little clinical value. In this paper, we propose an alternative paradigm in which the location of corresponding image-specific ROIs, defined in one image, within another image is learnt. This results in replacing image registration by a conditional segmentation algorithm, which can build on typical image segmentation networks and their widely-adopted training strategies. Using the registration of 3D MRI and ultrasound images of the prostate as an example to demonstrate this new approach, we report a median target registration error (TRE) of 2.1 mm between the ground-truth ROIs defined on intraoperative ultrasound images and those propagated from the preoperative MR images. Significantly lower (>34%) TREs were obtained using the proposed conditional segmentation compared with those obtained from a previously-proposed spatial-transformation-predicting registration network trained with the same multiple ROI labels for individual image pairs. We conclude this work by using a quantitative bias-variance analysis to provide one explanation of the observed improvement in registration accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)

  2. de Vos, B.D., et al.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  3. Eppenhof, K.A., et al.: Deformable image registration using convolutional neural networks. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105740S (2018)

    Google Scholar 

  4. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.Louis, Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  5. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  6. Balakrishnan, G., et al.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  7. Hering, A., Kuckertz, S., Heldmann, S., Heinrich, M.P.: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019. I, pp. 309–314. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25326-4_69

    Chapter  Google Scholar 

  8. Hu, Y., et al.: Adversarial deformation regularization for training image registration neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 774–782. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_87

    Chapter  Google Scholar 

  9. Siddiqui, M.M., et al.: Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4), 390–397 (2015)

    Article  Google Scholar 

  10. Valerio, M., et al.: New and established technology in focal ablation of the prostate: a systematic review. Eur. Urol. 71(1), 17–34 (2017)

    Article  Google Scholar 

  11. Lawrence, S., et al.: Neural network classification and prior class probabilities. In: Neural Networks: Tricks of the Trade, pp. 299–313 (1998)

    Google Scholar 

  12. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  13. Webb, G.I.: Multiboosting: a technique for combining boosting and wagging. Mach. Learn. 40(2), 159–196 (2000)

    Article  Google Scholar 

  14. Webb, G.I., Conilione, P.: Estimating bias and variance from data. Pre-publication manuscript (2005). http://users.monash.edu/~webb/Files/WebbConilione06.pdf

  15. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (203145Z/16/Z) and the Medical Image Analysis Network (EP/N026993/1). TV is supported by a Medtronic/RAEng Research Chair (RCSRF1819/7/34). Additional supports are from CRUK (C28070/A19985), the Wellcome (203145Z/16/Z; 203148/Z/16/Z) and the EPSRC (NS/A000050/1; NS/A000049/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Gibson, E., Barratt, D.C., Emberton, M., Noble, J.A., Vercauteren, T. (2019). Conditional Segmentation in Lieu of Image Registration. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics