Skip to main content

Constrained Domain Adaptation for Segmentation

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11765))

Abstract

We propose to adapt segmentation networks with a constrained formulation, which embeds domain-invariant prior knowledge about the segmentation regions. Such knowledge may take the form of simple anatomical information, e.g., structure size or shape, estimated from source samples or known a priori. Our method imposes domain-invariant inequality constraints on a network output of unlabeled target samples. It implicitly matches prediction statistics between target and source domains with permitted uncertainty of prior knowledge. We address our constrained problem with a differentiable penalty, fully suited for conventional gradient descent approaches, removing the need for computationally expensive Lagrangian optimization with dual projections. Unlike current two-step adversarial training, our formulation is based on a single loss in a single network, which simplifies adaptation by avoiding extra adversarial steps, while improving convergence and quality of training. The comparison of our approach with state-of-the-art adversarial methods reveals substantially better performance on the challenging task of adapting spine segmentation across different MRI modalities. Our results also show a robustness to imprecision of size priors, approaching the accuracy of a fully supervised model trained directly in a target domain. Our method can be readily used for various constraints and segmentation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/CDAMICCAI2019/CDA.

  2. 2.

    In fact, region size is the 0-order shape moment; one can use higher-order shape moments for richer descriptions of shape.

  3. 3.

    https://ivdm3seg.weebly.com/.

References

  1. Berry, J.L., Moran, J.M., Berg, W.S., Steffee, A.D.: A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12(4), 362–367 (1987)

    Article  Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  3. Chen, Y., Li, W., Van Gool, L.: Road: reality oriented adaptation for semantic segmentation of urban scenes. In: CVPR (2018)

    Google Scholar 

  4. Cheplygina, V., de Bruijne, M., Pluim, J.P.W.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. MedIA 54, 280–296 (2019)

    Google Scholar 

  5. Gholami, A., et al.: A novel domain adaptation framework for medical image segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 289–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_26

    Chapter  Google Scholar 

  6. He, F.S., Liu, Y., Schwing, A.G., Peng, J.: Learning to play in a day: faster deep reinforcement learning by optimality tightening. In: ICLR (2017)

    Google Scholar 

  7. Hoffman, J., et al.: CYCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  8. Hong, W., Wang, Z., Yang, M., Yuan, J.: Conditional generative adversarial network for structured domain adaptation. In: CVPR (2018)

    Google Scholar 

  9. Javanmardi, M., Tasdizen, T.: Domain adaptation for biomedical image segmentation using adversarial training. In: ISBI (2018)

    Google Scholar 

  10. Jia, Z., Huang, X., Chang, E.I., Xu, Y.: Constrained deep weak supervision for histopathology image segmentation. IEEE TMI 36(11), 2376–2388 (2017)

    Google Scholar 

  11. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  12. Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., Ayed, I.B.: Constrained-CNN losses for weakly supervised segmentation. MedIA 54, 88–99 (2019)

    Google Scholar 

  13. Klodt, M., Cremers, D.: segmentation with moment constraints. In: ICCV (2011)

    Google Scholar 

  14. Litjens, G., et al.: A survey on deep learning in medical image analysis. MedIA 42, 60–88 (2017)

    Google Scholar 

  15. Márquez-Neila, P., et al.: Imposing hard constraints on deep networks: promises and limitations. In: CVPR Workshop on Negative Results (2017)

    Google Scholar 

  16. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation, arxiv preprint arXiv:1606.02147 (2016)

  17. Pathak, D., Krähenbühl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV (2015)

    Google Scholar 

  18. Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 201–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_23

    Chapter  Google Scholar 

  19. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRTT-T approach to unsupervised domain adaptation. In: ICLR (2018)

    Google Scholar 

  20. Tsai, Y., Hung, W., Schulter, S., Sohn, K., Yang, M., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  21. Tzeng, E., et al.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  22. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: ICCV (2017)

    Google Scholar 

  23. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  24. Zhao, H., et al.: Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE TMI 38(1), 46–56 (2019)

    Google Scholar 

  25. Zou, Y., Yu, Z., Kumar, B.V.K.V., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Bateson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ayed, I.B. (2019). Constrained Domain Adaptation for Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics