Skip to main content

Probabilistic Atlases to Enforce Topological Constraints

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Probabilistic atlases (PAs) have long been used in standard segmentation approaches and, more recently, in conjunction with Convolutional Neural Networks (CNNs). However, their use has been restricted to relatively standardized structures such as the brain or heart which have limited or predictable range of deformations. Here we propose an encoding-decoding CNN architecture that can exploit rough atlases that encode only the topology of the target structures that can appear in any pose and have arbitrarily complex shapes to improve the segmentation results. It relies on the output of the encoder to compute both the pose parameters used to deform the atlas and the segmentation mask itself, which makes it effective and end-to-end trainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/cvlab-epfl/PA-net.git.

References

  1. Atzeni, A., Jansen, M., Ourselin, S., Iglesias, J.E.: A probabilistic model combining deep learning and multi-atlas segmentation for semi-automated labelling of histology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 219–227. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_25

    Chapter  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Dalca, A., Durand, F., Guttag, J.: Synthesizing images of humans in unseen poses. In: CVPR (2018)

    Google Scholar 

  3. Bertasius, G., Park, H.S., Yu, S.X., Shi, J.: Unsupervised learning of important objects from first-person videos. In: ICCV (2017)

    Google Scholar 

  4. Dong, S., et al.: VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 622–629. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_71

    Chapter  Google Scholar 

  5. Fei, W., et al.: Residual attention network for image classification. In: CVPR (2017)

    Google Scholar 

  6. Hering, A., Kuckertz, S., Heldmann, S., Heinrich, M.P.: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking. In: Bildverarbeitung für die Medizin (2019)

    Google Scholar 

  7. Huo, Y., et al.: Spatially localized atlas network tiles enables 3D whole brain segmentation from limited data. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 698–705. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_80

    Chapter  Google Scholar 

  8. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24, 205–219 (2015)

    Article  Google Scholar 

  9. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605 (2018)

    Article  Google Scholar 

  10. Katouzian, A., et al.: Hashing-based atlas ranking and selection for multiple-atlas segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 543–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_62

    Chapter  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571, October 2016

    Google Scholar 

  12. Retinal fundus glaucoma challenge (2018). http://refuge.grand-challenge.org. Accessed 24 Jun 2019

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Spitzer, H., Amunts, K., Harmeling, S., Dickscheid, T.: Parcellation of visual cortex on high-resolution histological brain sections using convolutional neural networks. In: ISBI, pp. 920–923 (2017)

    Google Scholar 

  15. Spitzer, H., Kiwitz, K., Amunts, K., Harmeling, S., Dickscheid, T.: Improving cytoarchitectonic segmentation of human brain areas with self-supervised siamese networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 663–671. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_76

    Chapter  Google Scholar 

  16. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Swiss National Science Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaranga Wickramasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wickramasinghe, U., Knott, G., Fua, P. (2019). Probabilistic Atlases to Enforce Topological Constraints. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics