Skip to main content

Cosine-Based Embedding for Completing Schematic Knowledge

  • Conference paper
  • First Online:
Book cover Natural Language Processing and Chinese Computing (NLPCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11838))

Abstract

Schematic knowledge, as a critical ingredient of knowledge graphs, defines logical axioms based on concepts to support for eliminating heterogeneity, integration, and reasoning over knowledge graphs (KGs). Although some well-known KGs contain large scale schematic knowledge, they are far from complete, especially schematic knowledge stating that two concepts have subclassOf relations (also called subclassOf axioms) and schematic knowledge stating that two concepts are logically disjoint (also called disjointWith axioms). One of the most important characters of these axioms is their logical properties such as transitivity and symmetry. Current KG embedding models focus on encoding factual knowledge (i.e., triples) in a KG and cannot directly be applied to further schematic knowledge (i.e., axioms) completion. The main reason is that they ignore these logical properties. To solve this issue, we propose a novel model named CosE for schematic knowledge. More precisely, CosE projects each concept into two semantic spaces. One is an angle-based semantic space that is utilized to preserve transitivity or symmetry of an axiom. The other is a translation-based semantic space utilized to measure the confidence score of an axiom. Moreover, two score functions tailored for subclassOf and disjointWith are designed to learn the representation of concepts with these two relations sufficiently. We conduct extensive experiments on link prediction on benchmark datasets like YAGO and FMA ontologies. The results indicate that CosE outperforms state-of-the-art methods and successfully preserve the transitivity and symmetry of axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://oaei.ontologymatching.org/.

References

  1. Miller, G.: WordNet: An Electronic Lexical Database. MIT press, Cambridge (1998)

    MATH  Google Scholar 

  2. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  3. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from wikipedia and WordNet. J. Web Sem. 6(3), 203–217 (2008)

    Article  Google Scholar 

  4. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? an analysis of the compatibility between vector space representations and rules. In: KR, pp. 379–388 (2018)

    Google Scholar 

  5. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  6. Weston, J., Bordes, A., Yakhnenko, O., Usunier, N.: Connecting language and knowledge bases with embedding models for relation extraction. In: EMNLP, pp. 1366–1371 (2013)

    Google Scholar 

  7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  8. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  9. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  10. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

    Google Scholar 

  11. Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding Entities and Relations for Learning and Inference in Knowledge Bases. CoRR, abs/1412.6575 (2014)

    Google Scholar 

  12. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge graphs. In: AAAI, pp. 1955–1961 (2016)

    Google Scholar 

  13. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  14. Diaz, G.I., Fokoue, A., Sadoghi, M.: EmbedS: scalable, ontology-aware graph embeddings. In: EBDT, pp. 433–436 (2018)

    Google Scholar 

  15. Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances for knowledge graph embedding. In: EMNLP, pp. 1971–1979 (2018)

    Google Scholar 

  16. Fu, X., Qi, G., Zhang, Y., Zhou, Z.: Graph-based approaches to debugging and revision of terminologies in DL-Lite. Knowl.-Based Syst. 100, 1–12 (2016)

    Google Scholar 

  17. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

    Google Scholar 

  18. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI, pp. 301–306 (2011)

    Google Scholar 

  19. Xiao, H., Huang, M., Hao, Y., Zhu, X.: TransA: An Adaptive Approach for Knowledge Graph Embedding. CoRR, abs/1509.05490 (2015)

    Google Scholar 

  20. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, pp. 687–696 (2015)

    Google Scholar 

  21. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: SIGKDD, pp. 601–610 (2014)

    Google Scholar 

  22. Liu, Q., et al.: Probabilistic Reasoning via Deep Learning: Neural Association Models. CoRR, abs/1603.07704 (2016)

    Google Scholar 

  23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  24. Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph completion. In: AAAI, pp. 1236–1242 (2017)

    Google Scholar 

  25. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  26. Chen, M., Tian, Y., Chen, X., Xue, Z., Zaniolo, C.: On2Vec: embedding-based relation prediction for ontology population. In: SIAM, pp. 315–323 (2018)

    Google Scholar 

  27. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: EMNLP, pp. 192–202 (2016)

    Google Scholar 

  28. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI, pp. 4816–4823 (2018)

    Google Scholar 

  29. Noy, N.F., Musen, M.A., Mejino Jr, J.L.V., Rosse, C.: Pushing the envelope: challenges in a frame-based representation of human anatomy. Data Knowl. Eng. 48(3), 335–359 (2004)

    Google Scholar 

  30. Gao, H., Qi, G., Ji, Q.: Schema induction from incomplete semantic data. Intell. Data Anal. 22(6), 1337–1353 (2018)

    Article  Google Scholar 

  31. Han, X., et al.: OpenKE: an open toolkit for knowledge embedding. In: EMNLP, pp. 139–144 (2018)

    Google Scholar 

  32. Xie, R., Liu, Z., Lin, F., Lin, L.: Does william shakespeare really write hamlet? knowledge representation learning with confidence. In: AAAI, pp. 4954–4961 (2018)

    Google Scholar 

  33. Wang, M., Wang, R., Liu, J., Chen, Y., Zhang, L., Qi, G.: Towards empty answers in SPARQL: approximating querying with RDF embedding. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 513–529. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_30

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China under grant (2017YFB1002801, 2018YFC0830200), the Natural Science Foundation of China grant (U1736204), the Fundamental Research Funds for the Central Universities (3209009601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, H., Zheng, X., Li, W., Qi, G., Wang, M. (2019). Cosine-Based Embedding for Completing Schematic Knowledge. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11838. Springer, Cham. https://doi.org/10.1007/978-3-030-32233-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32233-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32232-8

  • Online ISBN: 978-3-030-32233-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics