Skip to main content

Closing the Gap Between Deep and Conventional Image Registration Using Probabilistic Dense Displacement Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Nonlinear image registration continues to be a fundamentally important tool in medical image analysis. Diagnostic tasks, image-guided surgery and radiotherapy as well as motion analysis all rely heavily on accurate intra-patient alignment. Furthermore, inter-patient registration enables atlas-based segmentation or landmark localisation and shape analysis. When labelled scans are scarce and anatomical differences large, conventional registration has often remained superior to deep learning methods that have so far mainly dealt with relatively small or low-complexity deformations. We address this shortcoming by leveraging ideas from probabilistic dense displacement optimisation that has excelled in many registration tasks with large deformations. We propose to design a network with approximate min-convolutions and mean field inference for differentiable displacement regularisation within a discrete weakly-supervised registration setting. By employing these meaningful and theoretically proven constraints, our learnable registration algorithm contains very few trainable weights (primarily for feature extraction) and is easier to train with few labelled scans. It is very fast in training and inference and achieves state-of-the-art accuracies for the challenging inter-patient registration of abdominal CT outperforming previous deep learning approaches by 15% Dice overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code with all implementation details will be made publicly available.

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging (2019)

    Google Scholar 

  2. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)

    Article  Google Scholar 

  4. Heinrich, M.P., Oktay, O., Bouteldja, N.: Obelisk-net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med. Image Anal. 54, 1–9 (2019)

    Article  Google Scholar 

  5. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

    Chapter  Google Scholar 

  6. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  7. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  8. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NeurIPS, pp. 109–117 (2011)

    Google Scholar 

  9. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov, D., et al. (eds.) DLMIA 2018, ML-CDS 2018. LNCS, vol. 11045, pp. 101–109. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-00889-5_12

    Chapter  Google Scholar 

  10. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  11. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  12. Rühaak, J., et al.: Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans. Med. Imaging 36(8), 1746–1757 (2017)

    Article  Google Scholar 

  13. Sentker, T., Madesta, F., Werner, R.: GDL-FIRE\(^\text{4D }\): deep learning-based fast 4D CT image registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 765–773. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_86

    Chapter  Google Scholar 

  14. Jimenez-del Toro, O., Müller, H., Krenn, M., et al.: Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans. Med. Imaging 35(11), 2459–2475 (2016)

    Article  Google Scholar 

  15. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  16. Xu, Z., et al.: Evaluation of 6 registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

  17. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  18. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of ICCV, pp. 1529–1537 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias P. Heinrich .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinrich, M.P. (2019). Closing the Gap Between Deep and Conventional Image Registration Using Probabilistic Dense Displacement Networks. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics