Skip to main content

Decellularized Extracellular Matrix-Based Bioinks

  • Chapter
  • First Online:
3D Bioprinting

Abstract

Decellularized extracellular matrix (dECM)-based bioink enables the improved recapitulation of actual microenvironments when compared with conventional bioinks. When applied to the 3D printing technology, dECM facilitate the engineering of more realistic living constructs, including elaborate microarchitecture as well as biochemical environments of target tissues/organs. This chapter provides the fundamental knowledge of a dECM bioink such as the sources of native tissue/organ for decellularization, evaluation of decellularization process, and safety. Besides, by introducing the various applications of dECM bioinks, the superiority of dECM bioinks compared with conventional bioinks is covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  2. Hoganson DM, O’Doherty EM, Owens GE, Harilal DO, Goldman SM, Bowley CM, Neville CM, Kronengold RT, Vacanti JP. The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials. 2010;31(26):6730–7.

    Article  CAS  Google Scholar 

  3. Elliott RA Jr, Hoehn JG. Use of commercial porcine skin for wound dressings. Plast Reconstr Surg. 1973;52(4):401–5.

    Article  Google Scholar 

  4. Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  Google Scholar 

  5. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787–805.

    Article  CAS  Google Scholar 

  6. Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev. 2012;25(2):318–43.

    Article  CAS  Google Scholar 

  7. Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb Perspect Biol. 2016;8(7):a021865.

    Article  Google Scholar 

  8. Habiro K, Sykes M, Yang YG. Induction of human T‐cell tolerance to pig xenoantigens via thymus transplantation in mice with an established human immune system. Am J Transplant. 2009;9(6):1324–9.

    Article  CAS  Google Scholar 

  9. Komoda H, Okura H, Lee CM, Sougawa N, Iwayama T, Hashikawa T, Saga A, Yamamoto-Kakuta A, Ichinose A, Murakami S. Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A. 2009;16(4):1143–55.

    Article  Google Scholar 

  10. Sandrin M, Mckenzie IF. Galα (1, 3) Gal, the major xenoantigen (s) recognised in pigs by human natural antibodies. Immunol Rev. 1994;141(1):169–90.

    Article  CAS  Google Scholar 

  11. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  Google Scholar 

  12. Kasimir M-T, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G, Simon P. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs. 2003;26(5):421–7.

    Article  CAS  Google Scholar 

  13. Gallagher SR. Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Curr Protoc Neurosci. 2011;56(1):A.1K.1–A.1K.14.

    Article  Google Scholar 

  14. Noothi SK, Kombrabail M, Kundu TK, Krishnamoorthy G, Rao BJ. Enhanced DNA dynamics due to cationic reagents, topological states of dsDNA and high mobility group box 1 as probed by PicoGreen. FEBS J. 2009;276(2):541–51.

    Article  CAS  Google Scholar 

  15. Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle J-P, Martelly I, Papy-García D. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology. 2003;13(9):647–53.

    Article  CAS  Google Scholar 

  16. Hofman K, Hall B, Cleaver H, Marshall S. High-throughput quantification of hydroxyproline for determination of collagen. Anal Biochem. 2011;417(2):289–91.

    Article  CAS  Google Scholar 

  17. Kim BS, Kwon YW, Kong J-S, Park GT, Gao G, Han W, Kim M-B, Lee H, Kim JH, Cho D-W. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53.

    Article  CAS  Google Scholar 

  18. Lee H, Han W, Kim H, Ha D-H, Jang J, Kim BS, Cho D-W. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229–37.

    Article  CAS  Google Scholar 

  19. Welham NV, Chang Z, Smith LM, Frey BL. Proteomic analysis of a decellularized human vocal fold mucosa scaffold using 2D electrophoresis and high-resolution mass spectrometry. Biomaterials. 2013;34(3):669–76.

    Article  CAS  Google Scholar 

  20. Wiles K, Fishman JM, De Coppi P, Birchall MA. The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev. 2016;22(3):208–19.

    Article  Google Scholar 

  21. Fujii K, Yamagishi T, Nagafuchi T, Tsuji M, Kuboki Y. Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc. 1994;2(4):229–33.

    Article  CAS  Google Scholar 

  22. Fratzl P. Collagen: structure and mechanics, an introduction. Collagen. New York, NY: Springer; 2008. p. 1–13.

    Book  Google Scholar 

  23. Samuel CS. Determination of collagen content, concentration, and sub-types in kidney tissue. Kidney research. New York, NY: Springer; 2009. p. 223–35.

    Google Scholar 

  24. Nalinanon S, Benjakul S, Visessanguan W, Kishimura H. Tuna pepsin: characteristics and its use for collagen extraction from the skin of threadfin bream (Nemipterus spp.). J Food Sci. 2008;73(5):C413–9.

    Article  CAS  Google Scholar 

  25. Li H, Tan YJ, Leong KF, Li L. 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Appl Mater Interfaces. 2017;9(23):20086–97.

    Article  CAS  Google Scholar 

  26. Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A. Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Adv Healthc Mater. 2017;6(12):1601451.

    Article  Google Scholar 

  27. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002.

    Article  Google Scholar 

  28. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber reinforced cartilage ECM Functionalized bioinks for functional cartilage tissue engineering. Adv Healthc Mater. 2019;8:e1801501.

    Article  Google Scholar 

  29. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.

    Article  CAS  Google Scholar 

  30. Kim J, Shim IK, Hwang DG, Lee YN, Kim M, Kim H, Kim S-W, Lee S, Kim SC, Cho D-W. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B. 2019;7(10):1773–81.

    Article  CAS  Google Scholar 

  31. Kim H, Park M-N, Kim J, Jang J, Kim H-K, Cho D-W. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tiss Eng. 2019;10:2041731418823382.

    Google Scholar 

  32. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88–95.

    Article  CAS  Google Scholar 

  33. Ali M, Yoo JJ, Zahran F, Atala A, Lee SJ. A photo‐crosslinkable kidney ECM‐derived bioink accelerates renal tissue formation. Adv Healthc Mater. 2019;8:e1800992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, DW., Kim, B.S., Jang, J., Gao, G., Han, W., Singh, N.K. (2019). Decellularized Extracellular Matrix-Based Bioinks. In: 3D Bioprinting. Springer, Cham. https://doi.org/10.1007/978-3-030-32222-9_6

Download citation

Publish with us

Policies and ethics