Skip to main content

Prevalent Technologies for In Vitro Tissue/Organ Modeling

  • Chapter
  • First Online:
  • 831 Accesses

Abstract

To overcome the limitations of the traditional 2D cell culture platform, significant advances have been achieved for the emergence and rapid growth of 3D in vitro culture systems that can model the fundamental biology and pharmaceutics of tissues and organs. This chapter focuses on the most prevalent technologies that have been widely used for establishing the in vitro tissue/organ models, including transwell systems, cell spheroids/sheets, organoids, and microfluidic tissue/organ-on-a-chip. For these techniques, the working principle are individually introduced, followed by the discussion of their advantages and limitations. In addition, application cases of modeling the pathophysiology of tissues/organs are described for understanding of their characteristics and potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shi Y, Fan X, Meng W, Deng H, Zhang N, An Z. Engagement of immune effector cells by trastuzumab induces HER2/ERBB2 downregulation in cancer cells through STAT1 activation. Breast Cancer Res. 2014;16(2):R33.

    Article  Google Scholar 

  2. Wang Y, Wang N, Cai B, Wang G-y, Li J, Piao X-x. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res. 2015;10(12):2011.

    Article  CAS  Google Scholar 

  3. Lee Y, Dizzell S, Leung V, Nazli A, Zahoor M, Fichorova R, Kaushic C. Effects of female sex hormones on susceptibility to HSV-2 in vaginal cells grown in air-liquid interface. Viruses. 2016;8(9):241.

    Article  Google Scholar 

  4. Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK, Kim JS, Chung SJ, Shim CK, Kim DD. Air‐liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci. 2007;96(2):341–50.

    Article  CAS  Google Scholar 

  5. Li L, Fukunaga-Kalabis M, Herlyn M. The three-dimensional human skin reconstruct model: a tool to study normal skin and melanoma progression. J Vis Exp. 2011;(54):e2937.

    Google Scholar 

  6. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 2018;19(1):181.

    Article  Google Scholar 

  7. Kelm JM, Sanchez-Bustamante CD, Ehler E, Hoerstrup SP, Djonov V, Ittner L, Fussenegger M. VEGF profiling and angiogenesis in human microtissues. J Biotechnol. 2005;118(2):213–29.

    Article  CAS  Google Scholar 

  8. Li M, Ma J, Gao Y, Yang L. Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy. 2019;21:3.

    Article  CAS  Google Scholar 

  9. Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv Mater. 2007;19(20):3089–99.

    Article  CAS  Google Scholar 

  10. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, Okano T. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31(7):1646–54.

    Article  CAS  Google Scholar 

  11. Haraguchi Y, Shimizu T, Yamato M, Okano T. Scaffold-free tissue engineering using cell sheet technology. RSC Adv. 2012;2(6):2184–90.

    Article  CAS  Google Scholar 

  12. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246.

    Article  Google Scholar 

  13. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.

    Article  CAS  Google Scholar 

  14. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25–38.

    Article  CAS  Google Scholar 

  15. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329.

    Article  CAS  Google Scholar 

  16. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407.

    Article  CAS  Google Scholar 

  17. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, Lafaille FG, Trouillet C, Schmolke M, Albrecht RA. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015;348(6233):448–53.

    Article  CAS  Google Scholar 

  18. Takasato M, Pei XE, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa Lopes SMC. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564.

    Article  CAS  Google Scholar 

  19. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.

    Article  CAS  Google Scholar 

  20. Li X, Tian T. Recent advances in an organ-on-a-chip: biomarker analysis and applications. Anal Methods. 2018;10(26):3122–30.

    Article  Google Scholar 

  21. Konar D, Devarasetty M, Yildiz DV, Atala A, Murphy SV. Lung-on-a-chip technologies for disease modeling and drug development: supplementary issue: image and video acquisition and processing for clinical applications. Biomed Eng Comput Biol. 2016;7:BECB.S34252.

    Article  Google Scholar 

  22. Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018;132:235–51.

    Article  CAS  Google Scholar 

  23. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773.

    Article  CAS  Google Scholar 

  24. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34.

    Article  CAS  Google Scholar 

  25. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845.

    Article  CAS  Google Scholar 

  26. Gao G, Soo Kim B, Jang J, Cho DW. Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication. ACS Biomater Sci Eng. 2019;5:1150.

    Article  CAS  Google Scholar 

  27. Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017;51:1–20.

    Article  CAS  Google Scholar 

  28. Marcos R, Monteiro RA, Rocha E. Design‐based stereological estimation of hepatocyte number, by combining the smooth optical fractionator and immunocytochemistry with anti‐carcinoembryonic antigen polyclonal antibodies. Liver Int. 2006;26(1):116–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, DW., Kim, B.S., Jang, J., Gao, G., Han, W., Singh, N.K. (2019). Prevalent Technologies for In Vitro Tissue/Organ Modeling. In: 3D Bioprinting. Springer, Cham. https://doi.org/10.1007/978-3-030-32222-9_3

Download citation

Publish with us

Policies and ethics