Skip to main content

Therapy-Induced Marrow Changes

  • Chapter
  • First Online:
Practical Lymph Node and Bone Marrow Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1495 Accesses

Abstract

Bone marrow biopsies performed on patients previously treated for hematological diseases and other malignancies often show therapy-induced changes. We have broadly grouped these pleiotropic effects into the following six categories:

  1. (a)

    Cytopenias or marked marrow hypocellularity from cytotoxic/cytolytic agents

  2. (b)

    Cytoses or marrow hypercellularity from growth factor therapies including granulocyte colony stimulating factor, erythropoietin, and thrombopoietin

  3. (c)

    Differentiation of malignant hematologic cells from agents such as all-trans retinoic acid (ATRA) or IDH 1/2 inhibitors

  4. (d)

    Dysplasia: therapy-associated dysmorphology

  5. (e)

    Secondary neoplasms: therapy-associated myeloid neoplasms and immunodeficiency-associated lymphoproliferative disorders.

  6. (f)

    Miscellaneous: Therapy-associated immunophenotypic shifts/drifts, clonal hematopoiesis, etc.

In this chapter, we focus on effects of various therapies on bone marrow elements that may be morphologically detected, which is the first five of the six categories. The role of the pathologist in these scenarios is to integrate the clinical history and pathological findings, to sift through the confounding factors and morphologic mimickers to arrive at the appropriate diagnosis. Considering the large number of medications used in hematologic disease, their broad pathologic effects, and wide differences in prognosis, this can be an extremely daunting task for specialists and generalists alike. This chapter seeks to categorize, characterize, and advise pathologists on the effects of therapy-related sequela on the hematologic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vandendries ER, Drews RE. Drug-associated disease: hematologic dysfunction. Crit Care Clin. 2006;22(2):347–55, viii

    Article  CAS  PubMed  Google Scholar 

  2. Schafernak KT. Gelatinous transformation of the bone marrow from anorexia nervosa. Blood. 2016;127(10):1374.

    Article  CAS  PubMed  Google Scholar 

  3. Chang E, Rivero G, Jiang B, Yellapragada S, Thiagarajan P. Gelatinous marrow transformation associated with imatinib: case report and literature review. Case Rep Hematol. 2017;2017:1950724.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Goyal M, Gupta A, Yarlagadda S, Handoo A. Fatty but starving marrow! Gelatinous transformation of bone marrow secondary to plasma cell disorder and all-trans-retinoic acid therapy: a report of two cases. South Asian J Cancer. 2017;6(1):40–1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barrientos JC, Burger JA, Byrd JC, Hillmen P, Zhou C, Ninomoto J, et al. Characterizing the kinetics of lymphocytosis in patients with chronic lymphocytic leukemia treated with single-agent ibrutinib. Leuk Lymphoma. 2019;60:1000–5.

    Article  CAS  PubMed  Google Scholar 

  6. Chang BY, Francesco M, De Rooij MF, Magadala P, Steggerda SM, Huang MM, et al. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood. 2013;122(14):2412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de The H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10(11):775–83.

    Article  PubMed  CAS  Google Scholar 

  8. de The H. Differentiation therapy revisited. Nat Rev Cancer. 2018;18(2):117–27.

    Article  PubMed  CAS  Google Scholar 

  9. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Gorlich K, et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood. 2013;122(16):2877–87.

    Article  CAS  PubMed  Google Scholar 

  11. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339(6127):1621–5.

    Article  CAS  PubMed  Google Scholar 

  12. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan JM, Barrett O Jr. Reversible pseudo-Pelger anomaly related to sulfisoxazole therapy. N Engl J Med. 1967;277(8):421–2.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet. 2002;31(4):410–4.

    Article  CAS  PubMed  Google Scholar 

  17. Speeckaert MM, Verhelst C, Koch A, Speeckaert R, Lacquet F. Pelger-Huet anomaly: a critical review of the literature. Acta Haematol. 2009;121(4):202–6.

    Article  CAS  PubMed  Google Scholar 

  18. Colella R, Hollensead SC. Understanding and recognizing the Pelger-Huet anomaly. Am J Clin Pathol. 2012;137(3):358–66.

    Article  PubMed  Google Scholar 

  19. Etzell JE, Wang E. Acquired Pelger-Huet anomaly in association with concomitant tacrolimus and mycophenolate mofetil in a liver transplant patient: a case report and review of the literature. Arch Pathol Lab Med. 2006;130(1):93–6.

    Article  PubMed  Google Scholar 

  20. Dusse LM, Moreira AM, Vieira LM, Rios DR, Silva RM, Carvalho M. Acquired Pelger-Huet: what does it really mean? Clin Chim Acta. 2010;411(21–22):1587–90.

    Article  CAS  PubMed  Google Scholar 

  21. Wang E, Boswell E, Siddiqi I, Lu CM, Sebastian S, Rehder C, et al. Pseudo-Pelger-Huet anomaly induced by medications: a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Huet anomaly. Am J Clin Pathol. 2011;135(2):291–303.

    Article  PubMed  Google Scholar 

  22. Swerdlow SHWS, Chadburn A, Ferry JA. Post transplant lymphoproliferative disorders. In: Swedlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Siebert AOR, editors. WHO classification of tumours of hematopoietic and lymphoid tissues. World Health Organization Classification of Tumours. Revised 4th edition. Lyon: International Agency for Research on Cancer (IARC); 2017. p. 453–7.

    Google Scholar 

  23. Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a “moving target” for detection of residual disease. Cytometry B Clin Cytom. 2014;86(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  24. Wittels B. Bone marrow biopsy changes following chemotherapy for acute leukemia. Am J Surg Pathol. 1980;4(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  25. Ouyang W, Liu Y, Deng D, Zhou F, Xie C. The change in peripheral blood monocyte count: a predictor to make the management of chemotherapy-induced neutropenia. J Cancer Res Ther. 2018;14(Supplement):S565–S70.

    CAS  PubMed  Google Scholar 

  26. Islam A, Catovsky D, Galton DA. Histological study of bone marrow regeneration following chemotherapy for acute myeloid leukaemia and chronic granulocytic leukaemia in blast transformation. Br J Haematol. 1980;45(4):535–40.

    Article  CAS  PubMed  Google Scholar 

  27. Bohm J. Gelatinous transformation of the bone marrow: the spectrum of underlying diseases. Am J Surg Pathol. 2000;24(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  28. Li KD, Salama ME. Therapy effect: impact on bone marrow morphology. Surg Pathol Clin. 2016;9(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  29. Janssens AM, Offner FC, Van Hove WZ. Bone marrow necrosis. Cancer. 2000;88(8):1769–80.

    Article  CAS  PubMed  Google Scholar 

  30. Marsh JC, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70.

    Article  CAS  PubMed  Google Scholar 

  31. de Planque MM, van Krieken JH, Kluin-Nelemans HC, Colla LP, van der Burgh F, Brand A, et al. Bone marrow histopathology of patients with severe aplastic anaemia before treatment and at follow-up. Br J Haematol. 1989;72(3):439–44.

    Article  PubMed  Google Scholar 

  32. Frisch B, Lewis SM. The bone marrow in aplastic anaemia: diagnostic and prognostic features. J Clin Pathol. 1974;27(3):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuter DJ. Hematopoietic growth factors. In: Toby L, Simon JM, Snyder EL, Solheim BG, Strauss RG, editors. Rossi’s principle of transfusion medicine. 5th ed: NJ. Wiley Blackwell; 2016. p. 418–29.

    Google Scholar 

  34. Tegg EM, Tuck DM, Lowenthal RM, Marsden KA. The effect of G-CSF on the composition of human bone marrow. Clin Lab Haematol. 1999;21(4):265–70.

    Article  CAS  PubMed  Google Scholar 

  35. Meyerson HJ, Farhi DC, Rosenthal NS. Transient increase in blasts mimicking acute leukemia and progressing myelodysplasia in patients receiving growth factor. Am J Clin Pathol. 1998;109(6):675–81.

    Article  CAS  PubMed  Google Scholar 

  36. Brandt SJ, Peters WP, Atwater SK, Kurtzberg J, Borowitz MJ, Jones RB, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med. 1988;318(14):869–76.

    Article  CAS  PubMed  Google Scholar 

  37. Douglas VK, Tallman MS, Cripe LD, Peterson LC. Thrombopoietin administered during induction chemotherapy to patients with acute myeloid leukemia induces transient morphologic changes that may resemble chronic myeloproliferative disorders. Am J Clin Pathol. 2002;117(6):844–50.

    Article  CAS  PubMed  Google Scholar 

  38. Montesinos P, Bergua JM, Vellenga E, Rayon C, Parody R, de la Serna J, et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood. 2009;113(4):775–83.

    Article  CAS  PubMed  Google Scholar 

  39. Luesink M, Jansen JH. Advances in understanding the pulmonary infiltration in acute promyelocytic leukaemia. Br J Haematol. 2010;151(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  40. Luu HS, Rahaman PA. Mature neutrophils with Auer rods following treatment with all-trans retinoic acid for acute promyelocytic leukemia. Blood. 2015;126(1):121.

    Article  PubMed  Google Scholar 

  41. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood. 2000;95(1):90–5.

    CAS  PubMed  Google Scholar 

  42. Martin S, Tallman JKA. How I treat acute promyelocytic leukemia. Blood. 2009;114(25):5126–35.

    Article  CAS  Google Scholar 

  43. Ok CY, Medeiros LJ, Hu Y, Bueso-Ramos CE, Wang SA. Transient/reversible ring sideroblasts in bone marrow of patients post cytotoxic therapies for primary malignancies. Leuk Res. 2011;35(12):1605–10.

    Article  PubMed  Google Scholar 

  44. Orazi A, Cattoretti G, Soligo D, Luksch R, Lambertenghi-Deliliers G. Therapy-related myelodysplastic syndromes: FAB classification, bone marrow histology, and immunohistology in the prognostic assessment. Leukemia. 1993;7(6):838–47.

    CAS  PubMed  Google Scholar 

  45. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21(3):374–82.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peslak SA, Olson T, Babushok DV. Diagnosis and treatment of aplastic anemia. Curr Treat Options in Oncol. 2017;18(12):70.

    Article  Google Scholar 

  47. Riccardi A, Ucci G, Luoni R, Castello A, Coci A, Magrini U, et al. Bone marrow biopsy in monoclonal gammopathies: correlations between pathological findings and clinical data. The Cooperative Group for Study and Treatment of Multiple Myeloma. J Clin Pathol. 1990;43(6):469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Birendra KC, DiNardo CD. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutant IDH1 inhibitor, AG-120. Clin Lymphoma Myeloma Leuk. 2016;16(8):460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Granfeldt Ostgard LS, Medeiros BC, Sengelov H, Norgaard M, Andersen MK, Dufva IH, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a National Population-Based Cohort Study. J Clin Oncol. 2015;33(31):3641–9.

    Article  PubMed  Google Scholar 

  50. Hauke R, Smir B, Greiner T, Bierman P, Tarantolo S, Anderson J, et al. Clinical and pathological features of posttransplant lymphoproliferative disorders: influence on survival and response to treatment. Ann Oncol. 2001;12(6):831–4.

    Article  CAS  PubMed  Google Scholar 

  51. Pont J, Souvignet A, Campos L, Plesa A, Bulabois B, Pernollet M, et al. Accurate quantification of fourteen normal bone marrow cell subsets in infants to the elderly by flow cytometry. Cytometry B Clin Cytom. 2018;94(5):627–36.

    Article  CAS  PubMed  Google Scholar 

  52. Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med. 1991;324(20):1385–93.

    Article  PubMed  Google Scholar 

  53. Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, David MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130(6):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Glasser L, Fiederlein RL, Shamdas GJ, Brothman AR. Functional characteristics of in vivo induced neutrophils after differentiation therapy of acute promyelocytic leukemia with all-trans-retinoic acid. Cancer. 1994;73(4):1206–12.

    Article  CAS  PubMed  Google Scholar 

  55. Cicconi L, Lo-Coco F. Current management of newly diagnosed acute promyelocytic leukemia. Ann Oncol. 2016;27(8):1474–81.

    Article  CAS  PubMed  Google Scholar 

  56. Horna P, Zhang L, Sotomayor EM, Lancet JE, Moscinski LC. Diagnostic immunophenotype of acute promyelocytic leukemia before and early during therapy with all-trans retinoic acid. Am J Clin Pathol. 2014;142(4):546–52.

    Article  CAS  PubMed  Google Scholar 

  57. Short NJ, Kantarjian HM, Sasaki K, Cortes JE, Ravandi F, Thomas DA, et al. Prognostic significance of day 14 bone marrow evaluation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. Cancer. 2016;122(24):3812–20.

    Article  CAS  PubMed  Google Scholar 

  58. Park HS, Kim DY, Choi EJ, Lee JH, Lee JH, Jeon M, et al. Blast percentage of bone marrow aspirate on day 14 of induction chemotherapy predicts adult acute lymphoblastic leukemia treatment outcomes. Acta Haematol. 2018;139(4):220–7.

    Article  PubMed  Google Scholar 

  59. Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood. 2012;120(6):1185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bohlius J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandercock J, et al. Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev. 2006;(3):CD003407.

    Google Scholar 

  61. Rodeghiero F. ITP and thrombosis: an intriguing association. Blood Adv. 2017;1(24):2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  63. Rogers JE, Yang D. Differentiation syndrome in patients with acute promyelocytic leukemia. J Oncol Pharm Pract. 2012;18(1):109–14.

    Article  PubMed  Google Scholar 

  64. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  65. Fianchi L, Pagano L, Piciocchi A, Candoni A, Gaidano G, Breccia M, et al. Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am J Hematol. 2015;90(5):E80–5.

    Article  CAS  PubMed  Google Scholar 

  66. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  67. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17(9):513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu L, Zhang X, Feng S. Epstein-Barr virus-related post-transplantation lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(7):1341–9.

    Article  PubMed  Google Scholar 

  69. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14(4):203–20.

    Article  CAS  PubMed  Google Scholar 

  70. Natkunam Y, Gratzinger D, Chadburn A, Goodlad JR, Chan JKC, Said J, et al. Immunodeficiency-associated lymphoproliferative disorders: time for reappraisal? Blood. 2018;132(18):1871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dalal BI, Bruyere H, Barnett MJ. Significance of persistent Auer rods and cytogenetic abnormality after first cycle of therapy for acute promyelocytic leukaemia. Br J Haematol. 2007;137(5):385.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhargava, P., Whitman, J.D. (2020). Therapy-Induced Marrow Changes. In: Wang, E., Lagoo, A.S. (eds) Practical Lymph Node and Bone Marrow Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-32189-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32189-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32188-8

  • Online ISBN: 978-3-030-32189-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics