Skip to main content

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1557 Accesses

Abstract

Acute leukemias are some of the most urgent cases in the field of hematopathology requiring quick diagnosis and classification for effective, life-saving treatment. While morphology and immunophenotype are crucial in the identification of acute leukemias, accurate classification and identification of the numerous molecular and genetic abnormalities have gained increasing prominence in treatment decision as new targeted therapies are rapidly introduced. In this chapter, we will discuss various acute leukemias in the updated 2017 WHO classification and present the typical morphologic features, along with other diagnostic criteria, based on flow cytometry, cytogenetic, and molecular genetic findings. We will also discuss the minimal and optimal workup, major mimics, and how to differentiate these mimics to avoid misdiagnosis and inappropriate treatment.

The acute leukemias are traditionally divided into two major categories: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). With increasing treatment options, it is critical to differentiate acute leukemias of ambiguous lineage from these two traditional categories. AMLs are considered to be neoplastic clonal transformation of stem cells or immature cells of myeloid lineage. In the modern classification scheme of AML, the traditional morphological and immunophenotypic classification based on presence or absence of differentiation and the path of differentiation (e.g., promyelocytic, monocytic, erythroid, megakaryocytic, etc.) is applied after first categorizing AMLs based on history of prior therapy, presence of dysplastic morphologic features, and detection of recurrent genetic abnormalities. When none of these conditions apply, it is considered to be “AML not otherwise specified (AML, NOS)” and classified into categories which parallel the older French-American-British (FAB) classification. Special categories also include myeloid sarcoma and myeloid leukemia associated with Down syndrome.

Acute lymphoblastic leukemias consist of two major categories: B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL). Of these, B-ALL is much more common and is classified into B-ALL with recurrent genetic abnormalities and B-ALL, NOS. While most acute leukemias can be confidently diagnosed based on morphology and flow cytometry studies, we also discuss the mimics which pose diagnostic dilemma.

Acute leukemias have to be carefully differentiated from aggressive B-cell lymphoma involving peripheral blood/bone marrow, B-prolymphocytic leukemia (B-PLL), T-prolymphocytic leukemia (T-PLL), and atypical chronic lymphocytic leukemia (atypical CLL) and even from reactive conditions such as growth factor effect, vitamin B12 and/or folate deficiency, and severe toxin effect. Transient abnormal myelopoiesis associated with Down syndrome might need no treatment, while acute leukemia associated with Down syndrome requires immediate aggressive chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: The International Agency for Research on Cancer (IARC); 2017.

    Google Scholar 

  2. Palmer L, Briggs C, McFadden S, Zini G, Burthem J, Rozenberg G, et al. ICSH recommendations for the standardization of nomenclature and grading of peripheral blood cell morphological features. Int J Lab Hematol. 2015;37(3):287–303.

    Google Scholar 

  3. Sylvia MT, Jacob SE, Basu D. Multiple myeloma with crystalline and Auer rod-like inclusions. Br J Haematol. 2017;179(1):8.

    Google Scholar 

  4. Oberley MJ, Yang DT. Lymphoproliferative disorder with Auer rod-like inclusions. Blood. 2014;124(16):2607.

    Google Scholar 

  5. Pulsoni A, Stazi A, Cotichini R, Allione B, Cerri R, Di Bona E, et al. Acute promyelocytic leukaemia: epidemiology and risk factors. A report of the GIMEMA Italian archive of adult acute leukaemia. GIMEMA Cooperative Group. Eur J Haematol. 1998;61(5):327–32.

    Google Scholar 

  6. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119(1):34–43.

    Google Scholar 

  7. Golomb HM, Rowley JD, Vardiman JW, Testa JR, Butler A. “Microgranular” acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity. Blood. 1980;55(2):253–9.

    Google Scholar 

  8. McKenna RW, Parkin J, Bloomfield CD, Sundberg RD, Brunning RD. Acute promyelocytic leukaemia: a study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol. 1982;50(2):201–14.

    Google Scholar 

  9. Mrozek K, Prior TW, Edwards C, Marcucci G, Carroll AJ, Snyder PJ, et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol. 2001;19(9):2482–92.

    Google Scholar 

  10. Liu W, Hasserjian RP, Hu Y, Zhang L, Miranda RN, Medeiros LJ, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2011;24(3):375–83.

    Google Scholar 

  11. Kowal-Vern A, Cotelingam J, Schumacher HR. The prognostic significance of proerythroblasts in acute erythroleukemia. Am J Clin Pathol. 1992;98(1):34–40.

    Google Scholar 

  12. Wang SA, Hasserjian RP. Acute erythroleukemias, acute megakaryoblastic leukemias, and reactive mimics: a guide to a number of perplexing entities. Am J Clin Pathol. 2015;144(1):44–60.

    Google Scholar 

  13. Reinig EF, Greipp PT, Chiu A, Howard MT, Reichard KK. De novo pure erythroid leukemia: refining the clinicopathologic and cytogenetic characteristics of a rare entity. Mod Pathol. 2018;31(5):705–17.

    Google Scholar 

  14. Arber DA, Stein AS, Carter NH, Ikle D, Forman SJ, Slovak ML. Prognostic impact of acute myeloid leukemia classification. Importance of detection of recurring cytogenetic abnormalities and multilineage dysplasia on survival. Am J Clin Pathol. 2003;119(5):672–80.

    Google Scholar 

  15. Khalidi HS, Chang KL, Medeiros LJ, Brynes RK, Slovak ML, Murata-Collins JL, et al. Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol. 1999;111(4):467–76.

    Google Scholar 

  16. Khan M, Siddiqi R, Naqvi K. An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL). Ann Hematol. 2018;97(6):945–53.

    Google Scholar 

  17. Tavassoli M, Shaklai M, Crosby WH. Cytochemical diagnosis of acute myelomonocytic leukemia. Am J Clin Pathol. 1979;72(1):59–62.

    Google Scholar 

  18. Matsuo T, Jain NC, Bennett JM. Nonspecific esterase of acute promyelocytic leukemia (M3). Am J Hematol. 1988;29(3):148–51.

    Google Scholar 

  19. Dash A, Gilliland DG. Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(1):49–64.

    Google Scholar 

  20. Ravandi F, Stone R. Acute promyelocytic leukemia: a perspective. Clin Lymphoma Myeloma Leuk. 2017;17(9):543–4.

    Google Scholar 

  21. Sanz MA, Fenaux P, Tallman MS, Estey EH, Lowenberg B, Naoe T, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630–43.

    Google Scholar 

  22. Harris AC, Todd WM, Hackney MH, Ben-Ezra J. Bone marrow changes associated with recombinant granulocyte-macrophage and granulocyte colony-stimulating factors. Discrimination of granulocytic regeneration. Arch Pathol Lab Med. 1994;118(6):624–9.

    Google Scholar 

  23. Meyerson HJ, Farhi DC, Rosenthal NS. Transient increase in blasts mimicking acute leukemia and progressing myelodysplasia in patients receiving growth factor. Am J Clin Pathol. 1998;109(6):675–81.

    Google Scholar 

  24. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol. 2018;93(6):824–40.

    Google Scholar 

  25. Wang W, Wang SA, Medeiros LJ, Khoury JD. Pure erythroid leukemia. Am J Hematol. 2017;92(3):292–6.

    Google Scholar 

  26. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic syndromes, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(1):60–87.

    Google Scholar 

  27. Zipursky A, Brown EJ, Christensen H, Doyle J. Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Clin Lab Med. 1999;19(1):157–67, vii.

    Google Scholar 

  28. Litz CE, Davies S, Brunning RD, Kueck B, Parkin JL, Gajl Peczalska K, et al. Acute leukemia and the transient myeloproliferative disorder associated with Down syndrome: morphologic, immunophenotypic and cytogenetic manifestations. Leukemia. 1995;9(9):1432–9.

    Google Scholar 

  29. Brink DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoiesis) of Down syndrome. Adv Anat Pathol. 2006;13(5):256–62.

    Google Scholar 

  30. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.

    Google Scholar 

  31. Rozen L, Huybrechts S, Dedeken L, Heijmans C, Dessars B, Heimann P, et al. Transient leukemia in a newborn without Down syndrome: case report and review of the literature. Eur J Pediatr. 2014;173(12):1643–7.

    Google Scholar 

  32. Foucar K. Mature T-cell leukemias including T-prolymphocytic leukemia, adult T-cell leukemia/lymphoma, and Sezary syndrome. Am J Clin Pathol. 2007;127(4):496–510.

    Google Scholar 

  33. Chen Z, Hu S. MYC/BCL2 double-hit lymphoma/leukemia mimicking acute leukemia at initial presentation. Blood. 2016;127(8):1072.

    Google Scholar 

  34. Molina TJ, Delmer A, Cymbalista F, Le Tourneau A, Perrot JY, Ramond S, et al. Mantle cell lymphoma, in leukaemic phase with prominent splenomegaly. A report of eight cases with similar clinical presentation and aggressive outcome. Virchows Arch. 2000;437(6):591–8.

    Google Scholar 

  35. Matutes E, Parry-Jones N, Brito-Babapulle V, Wotherspoon A, Morilla R, Atkinson S, et al. The leukemic presentation of mantle-cell lymphoma: disease features and prognostic factors in 58 patients. Leuk Lymphoma. 2004;45(10):2007–15.

    Google Scholar 

  36. Ott G. Aggressive B-cell lymphomas in the update of the 4th edition of the World Health Organization classification of haematopoietic and lymphatic tissues: refinements of the classification, new entities and genetic findings. Br J Haematol. 2017;178(6):871–87.

    Google Scholar 

  37. Moench L, Sachs Z, Aasen G, Dolan M, Dayton V, Courville EL. Double- and triple-hit lymphomas can present with features suggestive of immaturity, including TdT expression, and create diagnostic challenges. Leuk Lymphoma. 2016;57(11):2626–35.

    Google Scholar 

  38. Rashidi A, Fisher SI. Double-hit lymphoma mimicking acute lymphoblastic leukemia at presentation. Eur J Haematol. 2015;94(4):374–6.

    Google Scholar 

  39. Sedek L, Bulsa J, Sonsala A, Twardoch M, Wieczorek M, Malinowska I, et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts? Cytometry B Clin Cytom. 2014;86(5):329–39.

    Google Scholar 

  40. Rimsza LM, Larson RS, Winter SS, Foucar K, Chong YY, Garner KW, et al. Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am J Clin Pathol. 2000;114(1):66–75.

    Google Scholar 

  41. Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, et al. Initial diagnostic workup of acute leukemia: guideline from the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med. 2017;141(10):1342–93.

    Google Scholar 

  42. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Google Scholar 

  43. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v69–82.

    Google Scholar 

  44. Cheng J, Klairmont MM, Choi JK. Peripheral blood flow cytometry for the diagnosis of pediatric acute leukemia: highly reliable with rare exceptions. Pediatr Blood Cancer. 2019;66(1):e27453.

    Google Scholar 

  45. Wongprajun S, Auewarakul CU. A method comparison study of flow cytometry and cytomorphology to determine the percentages of blasts in patients with acute leukemia after induction and consolidation chemotherapy. J Med Assoc Thail. 2010;93(Suppl 1):S157–64.

    Google Scholar 

  46. Ok CY, Medeiros LJ, Thakral B, Tang G, Jain N, Jabbour E, et al. High-grade B-cell lymphomas with TdT expression: a diagnostic and classification dilemma. Mod Pathol. 2019;32(1):48–58.

    Google Scholar 

  47. Vasef MA, Brynes RK, Murata-Collins JL, Arber DA, Medeiros LJ. Surface immunoglobulin light chain-positive acute lymphoblastic leukemia of FAB L1 or L2 type: a report of 6 cases in adults. Am J Clin Pathol. 1998;110(2):143–9.

    Google Scholar 

  48. Tsao L, Draoua HY, Osunkwo I, Nandula SV, Murty VV, Mansukhani M, et al. Mature B-cell acute lymphoblastic leukemia with t(9;11) translocation: a distinct subset of B-cell acute lymphoblastic leukemia. Mod Pathol. 2004;17(7):832–9.

    Google Scholar 

  49. Rabade N, Bibi A, Ghodke K, Patkar N, Tembhare P, Amare P, et al. Lymphoblastic leukemia with surface light chain restriction: a diagnostic dilemma. Indian J Pathol Microbiol. 2016;59(3):410–2.

    Google Scholar 

  50. Kim B, Lee ST, Kim HJ, Lee SH, Yoo KH, Koo HH, et al. Acute lymphoblastic leukemia with mature B-cell phenotype and t(9;11;11)(p22;q23;p11.2): a case study and literature review. Ann Lab Med. 2014;34(2):166–9.

    Google Scholar 

  51. Kansal R, Deeb G, Barcos M, Wetzler M, Brecher ML, Block AW, et al. Precursor B lymphoblastic leukemia with surface light chain immunoglobulin restriction: a report of 15 patients. Am J Clin Pathol. 2004;121(4):512–25.

    Google Scholar 

  52. Hirzel AC, Cotrell A, Gasparini R, Sriganeshan V. Precursor B-cell acute lymphoblastic leukemia/lymphoma with L3 morphology, Philadelphia chromosome, MYC gene translocation, and coexpression of TdT and surface light chains: a case report. Case Rep Pathol. 2013;2013:679892.

    Google Scholar 

  53. Charles NJ, Boyer DF. Mixed-phenotype acute leukemia: diagnostic criteria and pitfalls. Arch Pathol Lab Med. 2017;141(11):1462–8.

    Google Scholar 

  54. Perl AE. The role of targeted therapy in the management of patients with AML. Blood Adv. 2017;1(24):2281–94.

    Google Scholar 

  55. Portell CA, Advani AS. Novel targeted therapies in acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(4):737–48.

    Google Scholar 

  56. Zhang X, Rastogi P, Shah B, Zhang L. B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget. 2017;8(39):66728–41.

    Google Scholar 

  57. Orazi A, O'Malley DP, Jiang J, Vance GH, Thomas J, Czader M, et al. Acute panmyelosis with myelofibrosis: an entity distinct from acute megakaryoblastic leukemia. Mod Pathol. 2005;18(5):603–14.

    Google Scholar 

  58. Suvajdzic N, Marisavljevic D, Kraguljac N, Pantic M, Djordjevic V, Jankovic G, et al. Acute panmyelosis with myelofibrosis: clinical, immunophenotypic and cytogenetic study of twelve cases. Leuk Lymphoma. 2004;45(9):1873–9.

    Google Scholar 

  59. Patel KP, Khokhar FA, Muzzafar T, James You M, Bueso-Ramos CE, Ravandi F, et al. TdT expression in acute myeloid leukemia with minimal differentiation is associated with distinctive clinicopathological features and better overall survival following stem cell transplantation. Mod Pathol. 2013;26(2):195–203.

    Google Scholar 

  60. Clappier E, Auclerc MF, Rapion J, Bakkus M, Caye A, Khemiri A, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28(1):70–7.

    Google Scholar 

  61. Boer JM, van der Veer A, Rizopoulos D, Fiocco M, Sonneveld E, de Groot-Kruseman HA, et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia. 2016;30(1):32–8.

    Google Scholar 

  62. Clappier E, Grardel N, Bakkus M, Rapion J, De Moerloose B, Kastner P, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children’s Leukemia Group study 58951. Leukemia. 2015;29(11):2154–61.

    Google Scholar 

  63. Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202–7.

    Google Scholar 

  64. Yao QM, Liu KY, Gale RP, Jiang B, Liu YR, Jiang Q, et al. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia. BMC Cancer. 2016;16:269.

    Google Scholar 

  65. Hof J, Krentz S, van Schewick C, Korner G, Shalapour S, Rhein P, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29(23):3185–93.

    Google Scholar 

  66. Salmoiraghi S, Montalvo ML, Ubiali G, Tosi M, Peruta B, Zanghi P, et al. Mutations of TP53 gene in adult acute lymphoblastic leukemia at diagnosis do not affect the achievement of hematologic response but correlate with early relapse and very poor survival. Haematologica. 2016;101(6):e245–8.

    Google Scholar 

  67. Inthal A, Zeitlhofer P, Zeginigg M, Morak M, Grausenburger R, Fronkova E, et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012;26(8):1797–803.

    Google Scholar 

  68. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9.

    Google Scholar 

  69. Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA, et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103(9):3544–6.

    Google Scholar 

  70. Chillon MC, Gomez-Casares MT, Lopez-Jorge CE, Rodriguez-Medina C, Molines A, Sarasquete ME, et al. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia. Leukemia. 2012;26(11):2360–6.

    Google Scholar 

  71. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.

    Google Scholar 

  72. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Google Scholar 

  73. Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, et al. Prognostic importance of C-KIT mutations in core binding factor acute myeloid leukemia: a systematic review. Hematol Oncol Stem Cell Ther. 2017;10(1):1–7.

    Google Scholar 

  74. Yui S, Kurosawa S, Yamaguchi H, Kanamori H, Ueki T, Uoshima N, et al. D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations. Ann Hematol. 2017;96(10):1641–52.

    Google Scholar 

  75. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–76.

    Google Scholar 

  76. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5–19.

    Google Scholar 

  77. Lo-Coco F, Di Donato L, Gimema, Schlenk RF, German-Austrian Acute Myeloid Leukemia Study G, Study Alliance L. Targeted therapy alone for acute promyelocytic leukemia. N Engl J Med. 2016;374(12):1197–8.

    Google Scholar 

  78. Sanz MA, Montesinos P, Rayon C, Holowiecka A, de la Serna J, Milone G, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood. 2010;115(25):5137–46.

    Google Scholar 

  79. Hasserjian RP, Campigotto F, Klepeis V, Fu B, Wang SA, Bueso-Ramos C, et al. De novo acute myeloid leukemia with 20-29% blasts is less aggressive than acute myeloid leukemia with >/=30% blasts in older adults: a Bone Marrow Pathology Group study. Am J Hematol. 2014;89(11):E193–9.

    Google Scholar 

  80. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Google Scholar 

  81. Walter RB, Othus M, Burnett AK, Lowenberg B, Kantarjian HM, Ossenkoppele GJ, et al. Significance of FAB subclassification of “acute myeloid leukemia, NOS” in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. Blood. 2013;121(13):2424–31.

    Google Scholar 

  82. Knuutila S, Elonen E, Heinonen K, Borgstrom GH, Lakkala-Paranko T, Perkkio M, et al. Chromosome abnormalities in 16 Finnish patients with Burkitt’s lymphoma or L3 acute lymphocytic leukemia. Cancer Genet Cytogenet. 1984;13(2):139–51.

    Google Scholar 

  83. Smith SM, Yearsley M. Constructing comments in a pathology report: advice for the pathology resident. Arch Pathol Lab Med. 2016;140(10):1023–4.

    Google Scholar 

  84. Lindley SW, Gillies EM, Hassell LA. Communicating diagnostic uncertainty in surgical pathology reports: disparities between sender and receiver. Pathol Res Pract. 2014;210(10):628–33.

    Google Scholar 

  85. Konoplev S, Yin CC, Kornblau SM, Kantarjian HM, Konopleva M, Andreeff M, et al. Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma. 2013;54(1):138–44.

    Google Scholar 

  86. Nacheva EP, Grace CD, Brazma D, Gancheva K, Howard-Reeves J, Rai L, et al. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol. 2013;161(4):541–50.

    Google Scholar 

  87. Soupir CP, Vergilio JA, Dal Cin P, Muzikansky A, Kantarjian H, Jones D, et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol. 2007;127(4):642–50.

    Google Scholar 

  88. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Google Scholar 

  89. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    Google Scholar 

  90. Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9.

    Google Scholar 

  91. Chopra A, Bakhshi S, Pramanik SK, Pandey RM, Singh S, Gajendra S, et al. Immunophenotypic analysis of T-acute lymphoblastic leukemia. A CD5-based ETP-ALL perspective of non-ETP T-ALL. Eur J Haematol. 2014;92(3):211–8.

    Google Scholar 

  92. Bueso-Ramos CE, Kanagal-Shamanna R, Routbort MJ, Hanson CA. Therapy-related myeloid neoplasms. Am J Clin Pathol. 2015;144(2):207–18.

    Google Scholar 

  93. Thomas DA, O’Brien S, Jorgensen JL, Cortes J, Faderl S, Garcia-Manero G, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.

    Google Scholar 

  94. Baer C, Muehlbacher V, Kern W, Haferlach C, Haferlach T. Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica. 2018;103(8):e348–50.

    Google Scholar 

  95. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–14.

    Google Scholar 

  96. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740–6.

    Google Scholar 

  97. Lee JM, Kim IS, Lee JN, Park SH, Kim HH, Chang CL, et al. Acute myeloid leukemia with MLL rearrangement and CD4+/CD56+ expression can be misdiagnosed as blastic plasmacytoid dendritic cell neoplasm: two case reports. Ann Lab Med. 2016;36(5):494–7.

    Google Scholar 

  98. Pagano L, Valentini CG, Grammatico S, Pulsoni A. Blastic plasmacytoid dendritic cell neoplasm: diagnostic criteria and therapeutical approaches. Br J Haematol. 2016;174(2):188–202.

    Google Scholar 

  99. Reichard KK. Blastic plasmacytoid dendritic cell neoplasm: how do you distinguish it from acute myeloid leukemia? Surg Pathol Clin. 2013;6(4):743–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadee Neff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, Y., Grier, D.D., Neff, J. (2020). Acute Leukemias. In: Wang, E., Lagoo, A.S. (eds) Practical Lymph Node and Bone Marrow Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-32189-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32189-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32188-8

  • Online ISBN: 978-3-030-32189-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics