Skip to main content

Molecular Genetics and Cell Biology for Hematopathology

  • Chapter
  • First Online:
Practical Lymph Node and Bone Marrow Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1504 Accesses

Abstract

Molecular genetic tests provide objective evidence for a final diagnosis and refined classification in hematopathology. In this chapter, the principles of genetic and molecular tests, including chromosome analysis (conventional karyotyping), fluorescence in situ hybridization (FISH), microarray, polymerase chain reaction (PCR)-based tests, next-generation sequencing (NGS)-based clonality tests and cancer mutation profiling, are outlined to help understand their application in clinical practice. The test methods frequently used to assess bone marrow and lymph node samples are compared in detail for their advantages and disadvantages, to help pathologists make better decision in choosing the most appropriate test to facilitate pathologic diagnosis. The concept of a clonal process is introduced, followed by discussions on the relationship between a clonal process and a neoplasm and the tests used in detecting clonality, clonal diversity, and clonal evolution. The approaches to identify clonal B-cell or T-cell population based on the immunoglobulin or T-cell receptor gene rearrangement are described with focus on their indications, value in facilitating lymphoma diagnosis, and the pitfalls in result interpretation. Detection of chromosome rearrangements and fusion genes is frequently used to confirm a diagnosis and monitor treatment response. Different methods are explained for their utility in identifying commonly seen translocations including BCR-ABL1, PML-RARA, IGH/BCL2, CCND1/IGH, and other less well-defined, not disease-specific chromosome rearrangements. The application of PCR-based methods, Sanger sequencing, and pyrosequencing in identifying mutations is elaborated with a special focus on how to choose these methods for different diagnostic indications in a cost-effective way. Questions about the benefit of performing clonality test by NGS and the indications of NGS-based mutation profiling for hematopoietic and lymphoid disorders are answered. In the second part of the chapter, five cases are presented to illustrate how an appropriate molecular genetic test is used to facilitate the final diagnosis of each case. The tests used in these five cases include the conventional karyotyping to detect complicated translocations, a FISH test needed for the final diagnosis of a B-cell lymphoma, the clonality tests to facilitate a diagnosis of a T-cell lymphoma, and the NGS-based mutation profiling to identify a germline mutation that would likely be missed without the novel technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  2. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    Article  CAS  PubMed  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCurdy SR, Levis MJ. Emerging molecular predictive and prognostic factors in acute myeloid leukemia. Leuk Lymphoma. 2018;59(9):2021–39.

    Article  CAS  PubMed  Google Scholar 

  5. Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nebbioso A, Benedetti R, Conte M, Iside C, Altucci L. Genetic mutations in epigenetic modifiers as therapeutic targets in acute myeloid leukemia. Expert Opin Ther Targets. 2015;19(9):1187–202.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    Article  CAS  PubMed  Google Scholar 

  9. Go RS, Rajkumar SV. How I manage monoclonal gammopathy of undetermined significance. Blood. 2018;131(2):163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oishi N, Montes-Moreno S, Feldman AL. In situ neoplasia in lymph node pathology. Semin Diagn Pathol. 2018;35(1):76–83.

    Article  PubMed  Google Scholar 

  11. Scarfo L, Ghia P. What does it mean I have a monoclonal B-cell lymphocytosis? Recent insights and new challenges. Semin Oncol. 2016;43(2):201–8.

    Article  PubMed  Google Scholar 

  12. Xochelli A, Oscier D, Stamatopoulos K. Clonal B-cell lymphocytosis of marginal zone origin. Best Pract Res Clin Haematol. 2017;30(1–2):77–83.

    Article  PubMed  Google Scholar 

  13. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang L, Znoyko I, Costa LJ, Conlin LK, Daber RD, Self SE, et al. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia. Cancer Genet. 2011;204(12):654–65.

    Article  CAS  PubMed  Google Scholar 

  15. Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, et al. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol. 2016;175(3):476–89.

    Article  CAS  PubMed  Google Scholar 

  16. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrando AA, Lopez-Otin C. Clonal evolution in leukemia. Nat Med. 2017;23(10):1135–45.

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Jaye DL, Bradley KT, Zhang L, Saxe D, Deeb G, et al. Multimodality technologies in the assessment of hematolymphoid neoplasms. Arch Pathol Lab Med. 2017;141(3):341–54.

    Article  PubMed  Google Scholar 

  19. Martin CL, Warburton D. Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu Rev Genomics Hum Genet. 2015;16:309–26.

    Article  CAS  PubMed  Google Scholar 

  20. Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, et al. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med. 2013;15(6):450–7.

    Article  PubMed  Google Scholar 

  21. Lang BJ, Minyon C, Dhiman N, Gupta S, Wenceslao S, Vuica-Ross M, et al. Does supplemental interphase FISH analysis to standard chromosome analysis improve the detection of myelodysplastic syndrome? J Clin Oncol. 2017;35(15_suppl):7060–7060.

    Google Scholar 

  22. Fröhling S, Skelin S, Liebisch C, Scholl C, Schlenk RF, Döhner H, et al. Comparison of cytogenetic and molecular cytogenetic detection of chromosome abnormalities in 240 consecutive adult patients with acute myeloid leukemia. J Clin Oncol. 2002;20(10):2480–5.

    Article  PubMed  CAS  Google Scholar 

  23. Wolff DJ, Bagg A, Cooley LD, Dewald GW, Hirsch BA, Jacky PB, et al. Guidance for fluorescence in situ hybridization testing in hematologic disorders. J Mol Diagn. 2007;9(2):134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ritter M, Thiede C, Schäkel U, Schmidt M, Alpen B, Pascheberg U, et al. Underestimation of inversion (16) in acute myeloid leukaemia using standard cytogenetics as compared with polymerase chain reaction: results of a prospective investigation. Br J Haematol. 1997;98(4):969–72.

    Article  CAS  PubMed  Google Scholar 

  25. Raynaud SD, Dastugue N, Zoccola D, Shurtleff SA, Mathew S, Raimondi SC. Cytogenetic abnormalities associated with the t(12;21): a collaborative study of 169 children with t(12;21)-positive acute lymphoblastic leukemia. Leukemia. 1999;13(9):1325–30.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison CJ. Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood. 2015;125(9):1383–6.

    Article  CAS  PubMed  Google Scholar 

  27. Song J, Shao H. SNP array in hematopoietic neoplasms: a review. Microarrays (Basel). 2015;5(1):1–23.

    Article  CAS  Google Scholar 

  28. Hemmat M, Chen W, Anguiano A, Naggar ME, Racke FK, Jones D, et al. Submicroscopic deletion of 5q involving tumor suppressor genes (CTNNA1, HSPA9) and copy neutral loss of heterozygosity associated with TET2 and EZH2 mutations in a case of MDS with normal chromosome and FISH results. Mol Cytogenet. 2014;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yeung CCS, McElhone S, Chen XY, Ng D, Storer BE, Deeg HJ, et al. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod Pathol. 2018;31(4):569–80.

    Article  CAS  PubMed  Google Scholar 

  30. Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B, et al. Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood. 2012;119(25):6109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Macintyre EA. The use of the polymerase chain reaction in haematology. Blood Rev. 1989;3(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  32. Frantz C, Sekora DM, Henley DC, Huang CK, Pan Q, Quigley NB, et al. Comparative evaluation of three JAK2V617F mutation detection methods. Am J Clin Pathol. 2007;128(5):865–74.

    Article  CAS  PubMed  Google Scholar 

  33. Zapparoli GV, Jorissen RN, Hewitt CA, McBean M, Westerman DA, Dobrovic A. Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection. BMC Cancer. 2013;13:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maier CL, Fisher KE, Jones HH, Hill CE, Mann KP, Zhang L. Development and validation of CALR mutation testing for clinical diagnosis. Am J Clin Pathol. 2015;144(5):738–45.

    Article  CAS  PubMed  Google Scholar 

  35. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    Article  PubMed  Google Scholar 

  36. Iijima-Yamashita Y, Matsuo H, Yamada M, Deguchi T, Kiyokawa N, Shimada A, et al. Multiplex fusion gene testing in pediatric acute myeloid leukemia. Pediatr Int. 2018;60(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  37. Lefever S, Pattyn F, Hellemans J, Vandesompele J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem. 2013;59(10):1470–80.

    Article  CAS  PubMed  Google Scholar 

  38. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12(4):425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lennerz JK, Klaus BM, Marienfeld RB, Möller P. Pyrosequencing of BRAF V600E in routine samples of Hairy Cell Leukaemia identifies CD5+ variant Hairy Cell Leukaemia that lacks V600E. Br J Haematol. 2012;157(2):267–9.

    Article  CAS  PubMed  Google Scholar 

  40. Gebauer N, Bernard V, Röhner C, Krokowski M, Merz H, Feller AC, et al. Pyrosequencing as a fast and reliable method in detecting the MYD88 p.L265P mutation in decalcified formalin-fixed and paraffin-embedded tissues. Ann Lab Med. 2014;34(2):170–3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn. 2005;7(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat. 2002;19(5):479–85.

    Article  CAS  PubMed  Google Scholar 

  43. Hsi ED, Tubbs RR, Lovell MA, Braziel RM, Gulley ML. Detection of bcl-2/JH translocation by polymerase chain reaction. Arch Pathol Lab Med. 2002;126(8):902–8.

    Article  CAS  PubMed  Google Scholar 

  44. Espinet B, Bellosillo B, Melero C, Vela MC, Pedro C, Salido M, et al. FISH is better than BIOMED-2 PCR to detect IgH/BCL2 translocation in follicular lymphoma at diagnosis using paraffin-embedded tissue sections. Leuk Res. 2008;32(5):737–42.

    Article  CAS  PubMed  Google Scholar 

  45. Belaud-Rotureau MA, Parrens M, Carrere N, Turmo M, Ferrer J, de Mascarel A, et al. Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol. 2007;38(2):365–72.

    Article  CAS  PubMed  Google Scholar 

  46. Remstein ED, Kurtin PJ, Buno I, Bailey RJ, Proffitt J, Wyatt WA, et al. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma. Br J Haematol. 2000;110(4):856–62.

    Article  CAS  PubMed  Google Scholar 

  47. Advani AS, Pendergast AM. Bcr-Abl variants: biological and clinical aspects. Leuk Res. 2002;26(8):713–20.

    Article  CAS  PubMed  Google Scholar 

  48. Press RD, Kamel-Reid S, Ang D. BCR-ABL1 RT-qPCR for monitoring the molecular response to tyrosine kinase inhibitors in chronic myeloid leukemia. J Mol Diagn. 2013;15(5):565–76.

    Article  CAS  PubMed  Google Scholar 

  49. Foroni L, Wilson G, Gerrard G, Mason J, Grimwade D, White HE, et al. Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol. 2011;153(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  50. Cox MC, Maffei L, Buffolino S, Del Poeta G, Venditti A, Cantonetti M, et al. A comparative analysis of FISH, RT-PCR, and cytogenetics for the diagnosis of bcr-abl-positive leukemias. Am J Clin Pathol. 1998;109(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  51. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  52. O’Connor SJ, Evans PA, Morgan GJ. Diagnostic approaches to acute promyelocytic leukaemia. Leuk Lymphoma. 1999;33(1–2):53–63.

    Article  PubMed  Google Scholar 

  53. Tallman MS, Altman JK. How I treat acute promyelocytic leukemia. Blood. 2009;114(25):5126–35.

    Article  CAS  PubMed  Google Scholar 

  54. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91.

    Article  CAS  PubMed  Google Scholar 

  55. Shigeto S, Matsuda K, Yamaguchi A, Sueki A, Uehara M, Sugano M, et al. Rapid diagnosis of acute promyelocytic leukemia with the PML-RARA fusion gene using a combination of droplet-reverse transcription-polymerase chain reaction and instant-quality fluorescence in situ hybridization. Clin Chim Acta. 2016;453:38–41.

    Article  CAS  PubMed  Google Scholar 

  56. Dimov ND, Medeiros LJ, Kantarjian HM, Cortes JE, Chang KS, Bueso-Ramos CE, et al. Rapid and reliable confirmation of acute promyelocytic leukemia by immunofluorescence staining with an antipromyelocytic leukemia antibody: the M. D. Anderson Cancer Center experience of 349 patients. Cancer. 2010;116(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  57. Langerak AW, Groenen PJ, Bruggemann M, Beldjord K, Bellan C, Bonello L, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Evans PA, Pott C, Groenen PJ, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  59. Langerak AW, Molina TJ, Lavender FL, Pearson D, Flohr T, Sambade C, et al. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2007;21(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  60. Boer A, Tirumalae R, Bresch M, Falk TM. Pseudoclonality in cutaneous pseudolymphomas: a pitfall in interpretation of rearrangement studies. Br J Dermatol. 2008;159(2):394–402.

    Article  CAS  PubMed  Google Scholar 

  61. Langerak AW, van Dongen JJM. Multiple clonal Ig/TCR products: implications for interpretation of clonality findings. J Hematop. 2012;5(1):35–43.

    Article  Google Scholar 

  62. Groenen P, Langerak AW, van Dongen JJM, van Krieken J. Pitfalls in TCR gene clonality testing: teaching cases. J Hematop. 2008;1(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bagg A. Immunoglobulin and T-cell receptor gene rearrangements: minding your B’s and T’s in assessing lineage and clonality in neoplastic lymphoproliferative disorders. J Mol Diagn. 2006;8(4):426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huppmann AR, Roullet MR, Raffeld M, Jaffe ES. Angioimmunoblastic T-cell lymphoma partially obscured by an Epstein-Barr virus-negative clonal plasma cell proliferation. J Clin Oncol. 2013;31(2):e28–30.

    Article  PubMed  Google Scholar 

  65. Skugor ND, Peric Z, Vrhovac R, Radic-Kristo D, Kardum-Skelin I, Jaksic B. Diffuse large B-cell lymphoma in patient after treatment of angioimmunoblastic T-cell lymphoma. Coll Antropol. 2010;34(1):241–5.

    PubMed  Google Scholar 

  66. Dahl F, Stenberg J, Fredriksson S, Welch K, Zhang M, Nilsson M, et al. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci U S A. 2007;104(22):9387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–5.

    Article  CAS  PubMed  Google Scholar 

  68. Young AL, Wong TN, Hughes AE, Heath SE, Ley TJ, Link DC, et al. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia. 2015;29(7):1608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28(6):1299–307.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang Y, Nie K, Redmond D, Melnick AM, Tam W, Elemento O. VDJ-Seq: deep sequencing analysis of rearranged immunoglobulin heavy chain gene to reveal clonal evolution patterns of B cell lymphoma. J Vis Exp. 2015;106:e53215.

    Google Scholar 

  71. Klee EW, Hoppman-Chaney NL, Ferber MJ. Expanding DNA diagnostic panel testing: is more better? Expert Rev Mol Diagn. 2011;11(7):703–9.

    Article  CAS  PubMed  Google Scholar 

  72. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32(4):177–95.

    PubMed  PubMed Central  Google Scholar 

  73. Hagemann IS, Cottrell CE, Lockwood CM. Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Cancer Genet. 2013;206(12):420–31.

    Article  PubMed  Google Scholar 

  74. Kuo FC, Dong F. Next-generation sequencing-based panel testing for myeloid neoplasms. Curr Hematol Malig Rep. 2015;10(2):104–11.

    Article  PubMed  Google Scholar 

  75. Kuo FC, Mar BG, Lindsley RC, Lindeman NI. The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood. 2017;130(4):433–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  77. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Valent P, Orazi A, Steensma DP, Ebert BL, Haase D, Malcovati L, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8(43):73483–500.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Malcovati L, Galli A, Travaglino E, Ambaglio I, Rizzo E, Molteni E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129(25):3371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yap KL, Furtado LV, Kiyotani K, Curran E, Stock W, McNeer JL, et al. Diagnostic evaluation of RNA sequencing for the detection of genetic abnormalities associated with Ph-like acute lymphoblastic leukemia (ALL). Leuk Lymphoma. 2017;58(4):950–8.

    Article  CAS  PubMed  Google Scholar 

  81. Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects of genomic diagnostics for precision oncology. J Clin Oncol. 2017;35(9):929–33.

    Article  CAS  PubMed  Google Scholar 

  82. Thomas M, Sukhai MA, Zhang T, Dolatshahi R, Harbi D, Garg S, et al. Integration of technical, bioinformatic, and variant assessment approaches in the validation of a targeted next-generation sequencing panel for myeloid malignancies. Arch Pathol Lab Med. 2017;141(6):759–75.

    Article  PubMed  Google Scholar 

  83. Koboldt DC, Larson DE, Chen K, Ding L, Wilson RK. Massively parallel sequencing approaches for characterization of structural variation. Methods Mol Biol. 2012;838:369–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206(12):432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stengel A, Nadarajah N, Haferlach T, Dicker F, Kern W, Meggendorfer M, et al. Detection of recurrent and of novel fusion transcripts in myeloid malignancies by targeted RNA sequencing. Leukemia. 2018;32(5):1229–38.

    Article  CAS  PubMed  Google Scholar 

  86. Scherer F, Kurtz DM, Diehn M, Alizadeh AA. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood. 2017;130(4):440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang W, Cortes JE, Lin P, Beaty MW, Ai D, Amin HM, et al. Clinical and prognostic significance of 3q26.2 and other chromosome 3 abnormalities in CML in the era of tyrosine kinase inhibitors. Blood. 2015;126(14):1699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.

    Article  CAS  PubMed  Google Scholar 

  89. Mourad N, Mounier N, Briere J, Raffoux E, Delmer A, Feller A, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2008;111(9):4463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tan BT, Warnke RA, Arber DA. The frequency of B- and T-cell gene rearrangements and epstein-barr virus in T-cell lymphomas: a comparison between angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified with and without associated B-cell proliferations. J Mol Diagn. 2006;8(4):466–75.

    Google Scholar 

  91. Mir MA, Kochuparambil ST, Abraham RS, Rodriguez V, Howard M, Hsu AP, et al. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations. Cancer Med. 2015;4(4):490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, Cuellar-Rodriguez J, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015;125(1):56–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cortes-Lavaud X, Landecho MF, Maicas M, Urquiza L, Merino J, Moreno-Miralles I, et al. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation. J Immunol. 2015;194(5):2190–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L. (2020). Molecular Genetics and Cell Biology for Hematopathology. In: Wang, E., Lagoo, A.S. (eds) Practical Lymph Node and Bone Marrow Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-32189-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32189-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32188-8

  • Online ISBN: 978-3-030-32189-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics