Skip to main content

Essentials of the Immune Response and Immunophenotyping

  • Chapter
  • First Online:
Practical Lymph Node and Bone Marrow Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1536 Accesses

Abstract

Key concepts in immunology intersect the practice of hematopathology because the biology and classification of lymphoid neoplasms are best understood on this basis and accurate diagnosis of most hematolymphoid neoplasms very often relies on immune-based techniques. This chapter summarizes the fundamental divisions of the immune system at the cellular and functional level and relates these divisions to the immune responses in health and disease. The normal development of B-cells and T-cells is mapped to the anatomical and histological distribution of these cells at various stages of maturation and through immune responses. The pros and cons of the two principal techniques of determining the immunophenotype of normal and abnormal cells—multiparameter flow cytometry and immunohistochemistry—are compared. The immunophenotype of normal lymphoid cell subsets, developing myeloid cells, and major types of lymphomas and acute leukemias are presented. Finally, the rapidly expanding repertoire of antibody based therapies for hematolymphoid maligngncies is highlighted with this background of key immunologic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen B, Hajjar J. Overview of basic immunology for clinical investigators. Adv Exp Med Biol. 2017;995:1–31.

    Article  CAS  Google Scholar 

  2. Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv Immunol. 2011;109:87–124.

    Article  CAS  Google Scholar 

  3. McCoy KD, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity. Immunol Rev. 2017;279(1):63–9.

    Article  CAS  Google Scholar 

  4. Natarajan K, Jiang J, May NA, Mage MG, Boyd LF, McShan AC, et al. The role of molecular flexibility in antigen presentation and T cell receptor-mediated signaling. Front Immunol. 2018;9:1657.

    Article  Google Scholar 

  5. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91.

    Article  CAS  Google Scholar 

  6. Wang Y, Singh NK, Spear TT, Hellman LM, Piepenbrink KH, McMahan RH, et al. How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A. 2017;114(24):E4792–E801.

    Article  CAS  Google Scholar 

  7. Dare R, Sykes PJ, Morley AA, Brisco MJ. Effect of age on the repertoire of cytotoxic memory (CD8+CD45RO+) T cells in peripheral blood: the use of rearranged T cell receptor gamma genes as clonal markers. J Immunol Methods. 2006;308(1–2):1–12.

    Article  CAS  Google Scholar 

  8. De Libero G, Mori L. Recognition of lipid antigens by T cells. Nat Rev Immunol. 2005;5(6):485–96.

    Article  Google Scholar 

  9. Singhal A, Mori L. De Libero G. T cell recognition of non-peptidic antigens in infectious diseases. Indian J Med Res. 2013;138(5):620–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 2014;162(2 Pt B):103–12.

    Article  Google Scholar 

  11. Degauque N, Brosseau C, Brouard S. Regulation of the immune response by the inflammatory metabolic microenvironment in the context of allotransplantation. Front Immunol. 2018;9:1465.

    Article  Google Scholar 

  12. Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol. 2018;51:32–8.

    Article  CAS  Google Scholar 

  13. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94(3):193–205.

    Article  CAS  Google Scholar 

  14. Gell PGH, Cooms RRA. The classification of allergic reactions underlying disease. Clinical aspects of immunology. Oxford: Blackwell; 1963.

    Google Scholar 

  15. Sell S. Immunopathology of experimental models of syphilis, influenza, and asthma. Immunopathol Dis Therap. 2016;7(3–4):225–36.

    Google Scholar 

  16. Uzzaman A, Cho SH. Chapter 28: classification of hypersensitivity reactions. Allergy Asthma Proc. 2012;33(Suppl 1):96–9.

    Article  Google Scholar 

  17. Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev. 2012;11(10):754–65.

    Article  Google Scholar 

  18. Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun. 2017;83:31–42.

    Article  CAS  Google Scholar 

  19. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  20. Azizi G, Pouyani MR, Abolhassani H, Sharifi L, Dizaji MZ, Mohammadi J, et al. Cellular and molecular mechanisms of immune dysregulation and autoimmunity. Cell Immunol. 2016;310:14–26.

    Article  CAS  Google Scholar 

  21. Epeldegui M, Vendrame E, Martinez-Maza O. HIV-associated immune dysfunction and viral infection: role in the pathogenesis of AIDS-related lymphoma. Immunol Res. 2010;48(1–3):72–83.

    Article  CAS  Google Scholar 

  22. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13(12):875–87.

    Article  CAS  Google Scholar 

  23. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  24. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Google Scholar 

  25. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.

    Google Scholar 

  26. Robbins SL, Kumar V. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Saunders/Elsevier; 2010.

    Google Scholar 

  27. Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004;126(1):81–4.

    Google Scholar 

  28. Wang Y, Li Q, Zhu L, Mao X, Zhang H, Huang L, et al. Cytogenetics with flow cytometry in lymph node/extranodal tissue biopsies is sensitive to assist the early diagnosis of suspected lymphomas. Ann Hematol. 2017;96(10):1673–80.

    Google Scholar 

  29. Foucar K, Reichard K, Czuchlewski D. Bone marrow pathology. 3rd ed. Chicago: ASCP Press; 2010.

    Google Scholar 

  30. Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD, et al. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry. 2002;50(3):177–90.

    Google Scholar 

  31. Dunphy CH. American Society for Clinical Pathology. Integrated hematopathology: morphology and FCI with IHC. Chicago: American Society for Clinical Pathology; 2010.

    Google Scholar 

  32. Gaipa G, Basso G, Biondi A, Campana D. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2013;84(6):359–69.

    Google Scholar 

  33. Wood B. Multicolor immunophenotyping: human immune system hematopoiesis. Methods Cell Biol. 2004;75:559–76.

    Google Scholar 

  34. Peters JM, Ansari MQ. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch Pathol Lab Med. 2011;135(1):44–54.

    Google Scholar 

  35. Wood BL. Flow cytometric monitoring of residual disease in acute leukemia. Methods Mol Biol. 2013;999:123–36.

    Google Scholar 

  36. Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ, et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001;98(4):979–87.

    Google Scholar 

  37. Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102(1):394–403.

    Google Scholar 

  38. McPherson RA, Pincus MR, Henry JB. Henry’s clinical diagnosis and management by laboratory methods. 22nd ed. Philadelphia: Elsevier/Saunders; 2011.

    Google Scholar 

  39. Cerny T, Borisch B, Introna M, Johnson P, Rose AL. Mechanism of action of rituximab. Anti-Cancer Drugs. 2002;13(Suppl 2):S3–10.

    Article  CAS  Google Scholar 

  40. van Meerten T, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol. 2010;47(2):199–210.

    Article  Google Scholar 

  41. Suresh T, Lee LX, Joshi J, Barta SK. New antibody approaches to lymphoma therapy. J Hematol Oncol. 2014;7:58.

    Article  Google Scholar 

  42. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–66.

    Article  CAS  Google Scholar 

  43. Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31(9):1855–68.

    Article  CAS  Google Scholar 

  44. Hu B, Jacobs R, Ghosh N. Checkpoint inhibitors Hodgkin lymphoma and non-Hodgkin lymphoma. Curr Hematol Malig Rep. 2018;13:543.

    Article  Google Scholar 

  45. Radhakrishnan SV, Bhardwaj N, Steinbach M, Weidner J, Luetkens T, Atanackovic D. Elotuzumab as a novel anti-myeloma immunotherapy. Hum Vaccin Immunother. 2017;13(8):1751–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Shreeram Lagoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCall, C.M., Vallangeon, B.D., Lagoo, A.S. (2020). Essentials of the Immune Response and Immunophenotyping. In: Wang, E., Lagoo, A.S. (eds) Practical Lymph Node and Bone Marrow Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-32189-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32189-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32188-8

  • Online ISBN: 978-3-030-32189-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics