Skip to main content

Green Location Problems

  • Chapter
  • First Online:
Location Science

Abstract

This chapter discusses aspects of sustainability and “green” that are relevant to and arise within location problems. More specifically, it describes ways in which some environmental criteria, in particular emissions, can be quantified and integrated with location models. The chapter also presents design problems in which location decisions arise as one of the key ingredients in improving the environmental performance of distribution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the full set of factors, see https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2017.

  2. 2.

    For the full set of parameters, see https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i-1/at_download/file.

References

  • Akçalı E, Çetinkaya S, Üster H (2009) Network design for reverse and closed-loop supply chains: an annoted bibliography of models and solution approaches. Networks 53:231–248

    Article  MATH  Google Scholar 

  • Alumur SA, Nickel S, Saldanha-da-Gama F, Verter V (2012) Multi-period reverse logistics network design. Eur J Oper Res 220:67–78

    Article  MathSciNet  MATH  Google Scholar 

  • Aras N, Boyacı T, Verter V (2010) Designing the reverse logistics network. In: Ferguson M, Souza G (eds) Closed loop supply chains: new developments to improve the sustainability of business practices. CRC Press, Boca Raton, chap 5, pp 67–98

    Google Scholar 

  • Arslan O, Karaşan OE (2016) A benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles. Transp Res B Methodol 93:670–695

    Article  Google Scholar 

  • Baker P, Marchant C (2015) Reducing the environmental impact of warehousing. In: McKinnon et al (eds) Green logistics: improving the environmental sustainability of logistics. Kogan Page, London, pp 194–226

    Google Scholar 

  • Berman O, Hodgson MJ, Krass D (1995) Flow-interception problems In: Drezner Z, Hamacher HW (eds). Facility location: Applications and Theory. Springer, New York, pp 389–426

    Google Scholar 

  • Bostel N, Dejax P, Lu Z (2005) The design, planning, and optimization of reverse logistics networks. In: Langevin A, Riopel D (eds) Logistics systems: design and optimization. Springer, New York, chap 6, pp 171–212

    Google Scholar 

  • Capar I, Kuby M (2012) An efficient formulation of the flow refueling location model for alternative-fuel stations. IIE Trans 44(8):622–636

    Article  Google Scholar 

  • Capar I, Kuby M, Leon VJ, Tsai Y (2013) An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations. Eur J Oper Res 227(1):142–151

    Article  Google Scholar 

  • Chen Z, He F, Yin Y (2016) Optimal deployment of charging lanes for electric vehicles in transportation networks. Transp Res B: Methodol 91:344–365

    Article  Google Scholar 

  • De Brito MP, Dekker R (2004) A framework for reverse logistics. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse logistics: quantitative models for closed-loop supply chains. Springer, Berlin, chap 1, pp 3–27

    Google Scholar 

  • Demir E, Bektaş T, Laporte G (2014) A review of recent research on green road freight transportation. Eur J Oper Res 237(3), 775–793

    Article  MATH  Google Scholar 

  • Easwaran G, Üster H (2009) Tabu search and benders decomposition approaches for a capacitated closed-loop supply chain network design problem. Transp Sci 43:301–320

    Article  Google Scholar 

  • El-Sayed M, Afia N, El-Kharbotly A (2010) A stochastic model for forward-reverse logistics network design under risk. Comput Ind Eng 58:423–431

    Article  Google Scholar 

  • Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res 40:275–291

    Article  MathSciNet  MATH  Google Scholar 

  • Erkut, E, Verter V (1995) Hazardous materials logistics In: Drezner Z, Hamacher HW (eds). Facility location: a survey of applications and methods. Springer, New York, pp 467–506

    Google Scholar 

  • Fleischmann M, Bloemhof-Ruwaard JM, Beullens P, Dekker R (2004) Reverse logistics network design. In: Dekker R, Fleischmann M, Inderfurth K, Van Wassenhove LN (eds) Reverse logistics: quantitative models for closed-loop supply chains. Springer, Berlin, chap 4, pp 65–94

    Google Scholar 

  • Fonseca MC, García-Sánchez A, Ortega-Mier M, Saldanha-da-Gama F (2010) A stochastic bi-objective location model for strategic reverse logistics. TOP 18:158–184

    Article  MathSciNet  MATH  Google Scholar 

  • Ghiani G, Laganà D, Manni E, Musmanno R, Vigo D (2014) Operations research in solid waste management: a survey of strategic and tactical issues. Comput Oper Res 44:22–32

    Article  Google Scholar 

  • Goodchild MF, Noronha VT (1987) Location-allocation and impulsive shopping: the case of gasoline retailing. Spatial analysis and location-allocation models, 121–136

    Google Scholar 

  • Guerra CF, García-Ródenas R, Sánchez-Herrera EA, Rayo DV, Clemente-Jul C (2016) Modeling of the behavior of alternative fuel vehicle buyers. A model for the location of alternative refueling stations. Int J Hydrog Energy 41(42):19,312–19,319

    Article  Google Scholar 

  • Hackbarth A, Madlener R (2013) Consumer preferences for alternative fuel vehicles: a discrete choice analysis. Transp Res D Transp Environ 25:5–17

    Article  Google Scholar 

  • Hill N, Bramwell R, Harris B, (2017) 2017 Government GHG conversion factors for company reporting. UK Government, Department for Business, Energy & Industrial Strategy, London. Available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/650244/2017_methodology_paper_FINAL_MASTER.pdf. Accessed 18 Feb 2018

  • Hodgson JM (1990) A flow-capturing location-allocation model. Geogr Anal 22(3):270–279

    Article  Google Scholar 

  • Hof J, Schneider M, Goeke D (2017) Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops. Transp Res B Methodol 97:102–112

    Article  Google Scholar 

  • Jaehn F (2016) Sustainable operations. Eur J Oper Res 253:243–264

    Article  MathSciNet  MATH  Google Scholar 

  • Jayaraman V, Luo Y (2007) Creating competitive advantages through new value creation: a reverse logistics perspective. Acad Manage Perspect 21:56–73

    Article  Google Scholar 

  • Kang JE, Recker W (2014) Strategic hydrogen refueling station locations with scheduling and routing considerations of individual vehicles. Transp Sci 49(4):767–783

    Article  Google Scholar 

  • Keskin M, Çatay B (2016) Partial recharge strategies for the electric vehicle routing problem with time windows. Transp Res C: Emerg Technol 65:111–127

    Article  Google Scholar 

  • Kim JG, Kuby M (2012) The deviation-flow refueling location model for optimizing a network of refueling stations. Int J Hydrog Energy 37(6):5406–5420

    Article  Google Scholar 

  • Koç Ç, Bektaş T, Jabali O, Laporte, G (2014) The fleet size and mix pollution-routing problem. Transp Res B: Methodol 70:239–254

    Article  MATH  Google Scholar 

  • Kong C, Jovanovic R, Bayram IS, Devetsikiotis M (2017) A hierarchical optimization model for a network of electric vehicle charging stations. Energies 10(5):675

    Article  Google Scholar 

  • Krikke HR, Bloemhof-Ruward JM, Van Wassenhove LN (2003) Concurrent product and closed-loop supply chain design with an application to refrigerators. Int J Prod Res 41:3689–3719

    Article  MATH  Google Scholar 

  • Kuby M, Lim S (2005) The flow-refueling location problem for alternative-fuel vehicles. Socio Econ Plan Sci 39(2):125–145

    Article  Google Scholar 

  • Kuby M, Lim S (2007) Location of alternative-fuel stations using the flow-refueling location model and dispersion of candidate sites on arcs. Netw Spat Econ 7(2):129–152

    Article  MathSciNet  MATH  Google Scholar 

  • Lee DH, Dong M (2009) Dynamic network design for reverse logistics operations under uncertainty. Transp Res E-Log 45:61–71

    Article  Google Scholar 

  • Lee C, Han J (2017) Benders-and-price approach for electric vehicle charging station location problem under probabilistic travel range. Transp Res B: Methodol 106:130–152

    Article  Google Scholar 

  • Li S, Huang Y (2014) Heuristic approaches for the flow-based set covering problem with deviation paths. Transp Res E: Log Transp Rev 72:144–158

    Article  Google Scholar 

  • Lim S, Kuby M (2010) Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur J Oper Res 204(1):51–61

    Article  MATH  Google Scholar 

  • Listeş O (2007) A generic stochastic model for supply-and-return network design. Comput Oper Res 34:417–442

    Article  MATH  Google Scholar 

  • Listeş O, Dekker R (2005) A stochastic approach to a case study for product recovery network design. Eur J Oper Res 160:268–287

    Article  MATH  Google Scholar 

  • Liu H, Wang DZW (2017) Locating multiple types of charging facilities for battery electric vehicles. Transp Res B: Methodol 103:30–55

    Article  Google Scholar 

  • Mak HY, Rong Y, Shen ZJM (2013) Infrastructure planning for electric vehicles with battery swapping. Manag Sci 59(7):1557–1575

    Article  Google Scholar 

  • Melachrinoudis E (2011) The location of undesirable facilities In: Eiselt HA, Marianov, V (eds). Foundations of location analysis. Springer, New York, pp 207–239

    Google Scholar 

  • McKinnon A, Browne M, Whiteing A, Piecyk M (eds) (2015) Green logistics: improving the environmental sustainability of logistics. Kogan Page, London

    Google Scholar 

  • MirHassani SA, Ebrazi R (2012) A flexible reformulation of the refueling station location problem. Transp Sci 47(4):617–628

    Article  Google Scholar 

  • Nicholas M, Handy S, Sperling D (2004) Using geographic information systems to evaluate siting and networks of hydrogen stations. Transp Res Rec: J Transp Res Board 1880:126–134

    Article  Google Scholar 

  • Nourbakhsh SM, Ouyang Y (2010) Optimal fueling strategies for locomotive fleets in railroad networks. Transp Res B: Methodol 44(8–9):1104–1114

    Article  Google Scholar 

  • Ntziachristos L, Samaras Z (2017) EMEP/EEA air pollutant emission inventory guidebook. European environment agency: part 1.A.3.b.i-iv Road transport 2017, Luxembourg. Available at https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i. Accessed 19 May 2018

  • Pati RK, Vrat P, Kumar P (2008) A goal programming model for paper recycling system. Omega 36:405–417

    Article  Google Scholar 

  • Pelletier S, Jabali O, Laporte G (2016) 50th anniversary invited article – goods distribution with electric vehicles: review and research perspectives. Transp Sci 50(1):3–22

    Article  Google Scholar 

  • Psaraftis H (ed) (2016) Green transportation logistics: the quest for win-win solutions. Springer, Cham

    Google Scholar 

  • Realff MJ, Ammons JC, Newton DJ (2004) Robust reverse production system design for carpet recycling. IIE Trans 36:767–776

    Article  Google Scholar 

  • Salema MI, Barbosa-Póvoa AP, Novais AQ (2007) An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. Eur J Oper Res 179:1063–1077

    Article  MATH  Google Scholar 

  • Salema MI, Barbosa-Póvoa AP, Novais AQ (2010) Simultaneous design and planning of supply chains with reverse flows: a generic modelling framework. Eur J Oper Res 203:336–349

    Article  MATH  Google Scholar 

  • Schiffer M, Walther G (2017) The electric location routing problem with time windows and partial recharging. Eur J Oper Res 260(3):995–1013

    Article  MathSciNet  MATH  Google Scholar 

  • Tari I, Alumur SA (2014) Collection center location with equity considerations in reverse logistics networks. INFOR: Inf Syst Oper Res 52:157–173

    MathSciNet  Google Scholar 

  • Toro EM, Franco JF, Echeverri MG, Guimarães FG (2017) A multi-objective model for the green capacitated location-routing problem considering environmental impact. Comput Ind Eng 110:114–125

    Article  Google Scholar 

  • Tricoire F, Parragh SN (2017) Investing in logistics facilities today to reduce routing emissions tomorrow. Transp Res B: Methodol 103:56–67

    Article  Google Scholar 

  • Tzeng GH, Lin CW, Opricovic S (2005) Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 33(11):1373–1383

    Article  Google Scholar 

  • Upchurch C, Kuby M (2010) Comparing the p-median and flow-refueling models for locating alternative-fuel stations. J Transp Geogr 18(6):750–758

    Article  Google Scholar 

  • Upchurch C, Kuby M, Lim S (2009) A model for location of capacitated alternative-fuel stations. Geogr Anal 41(1):85–106

    Article  Google Scholar 

  • Wang YW, Lin CC (2009) Locating road-vehicle refueling stations. Transp Res E: Log Transp Rev 45(5):821–829

    Article  Google Scholar 

  • Wang YW, Lin CC (2009) Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transp Res E: Log Transp Rev 58:76–87

    Article  Google Scholar 

  • Wang YW, Wang CR (2010) Locating passenger vehicle refueling stations. Transp Res E: Log Transp Rev 46(5):791–801

    Article  Google Scholar 

  • Wikipedia, the free encyclopedia. Available at https://en.wikipedia.org/wiki/Alternative_fuel_vehicle. Accessed 5 April 2018

  • Yıldız B, Arslan O, Karaşan OE (2016) A branch and price approach for routing and refueling station location model. Eur J Oper Res 248(3):815–826

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Sun H (2015) Battery swap station location-routing problem with capacitated electric vehicles. Comput Oper Res 55:217–232

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Alumur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alumur, S.A., Bektaş, T. (2019). Green Location Problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham. https://doi.org/10.1007/978-3-030-32177-2_20

Download citation

Publish with us

Policies and ethics