Skip to main content

Energy Management of Hybrid AC-DC Microgrid Under Demand Response Programs: Real-Time Pricing Versus Time-of-Use Pricing

  • Chapter
  • First Online:
Book cover Demand Response Application in Smart Grids

Abstract

Nowadays, due to the presence of AC and DC loads in the electricity network, the use of an energy storage system (ESS), and DC renewable energy resources (RER), the implementation of hybrid AC-DC microgrid (H-AC-DC-MG) is a proper option instead of conventional AC microgrid (C-AC-MG). In this chapter, a proper scheduling and optimal operation of H-AC-DC-MG is proposed in comparison with C-AC-MG. The obtained results prove the supremacy of the H-AC-DC-MG in comparison with C-AC-MG. In addition, two types of demand response programs (DRPs), namely, time-of-use (TOU) DR and real-time pricing (RTP), are proposed to improve peak periods for reducing operation cost of H-AC-DC-MG. The operation cost of C-AC-MG has been reduced by 7.1% and 42% and also 8.1% and 53.89% in H-AC-DC-MG due to implementation of TOU and RTP, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

n :

Index of PHEV

t :

Index of time

α dcharge :

The coefficient of PHEVs’ discharging (P.U.)

η AC‐DC :

Rectifier efficiency (P.U.)

η DC‐AC :

Inverter efficiency (P.U.)

η DG :

Efficiency of DG unit (P.U.)

C O & M :

The cost of maintenance and operation of DG ($)

DRmax:

Maximum participant load in DRP (%)

HR:

Heat rate of natural gas (kWh/m3)

Incmax:

Maximum load that can be increased (kW)

\( {\mathrm{load}}_t^0 \) :

Initial load (kW)

LoadAC(t):

AC load at time t (kW)

LoadDC(t):

DC load at time t (kW)

LoadTotal(t):

Load at time t (kW)

P av :

Average electricity demand

P conv :

Converter nominal power (kW)

P DG, max :

Maximum power of DG unit (kW)

PPV(t):

Generated power in PV panels at time t (kW)

PWT(t):

Generated power in wind turbine at time t (kW)

PRfuel:

The fuel price ($)

PRsell:

Selling price to the external grid ($/kWh)

PRTOU(t):

TOU prices at time t ($/kWh)

\( {\mathrm{PEV}}_{\mathrm{charge},\max}^n \) :

Maximum charged power of PHEV (kW)

\( {\mathrm{PEV}}_{\mathrm{dcharge},\max}^n \) :

Maximum discharged power of PHEV (kW)

PGmax:

Maximum exchange power through external grid (kW)

QEVn:

Capacity of PHEV (kWh)

RR:

Ramp rate of DG unit (kW/h)

\( {\mathrm{SOC}}_{\mathrm{min}}^n \) :

Minimum state of charge of PHEV (kWh)

\( {\mathrm{SOC}}^n\left({t}_{\mathrm{arr}}^n\right) \) :

PHEV SOC at the time of arrival (kWh)

\( {\mathrm{SOC}}^n\left({t}_{\mathrm{dep}}^n\right) \) :

PHEV SOC at the time of departure (kWh)

\( {\mathrm{SOC}}_{\mathrm{in}}^n \) :

Input state of charge of PHEV (kWh)

\( {\mathrm{SOC}}_{\mathrm{out}}^n \) :

PHEV state-of-charge output (kWh)

\( {X}_{\mathrm{charge}}^n \) :

Binary variable for PHEV’s charging at time t

\( {X}_{\mathrm{dcharge}}^n \) :

Binary variable for PHEV’s discharging at t

XAC‐DC(t):

Binary variable for AC to DC converted power at time t

XDC‐AC(t):

Binary variable for DC to AC converted power at time t

XGin(t):

Binary variable for external grid purchased power at time t

XGout(t):

Binary variable for sold power to external grid at time t

DRt:

Potential of DRP execution (%)

F(t):

Gas consumption at time t (m3)

inct:

Amount of increasing load in DRP (kW)

ldrt:

Shiftable load at time t (kW)

\( {\mathrm{load}}_t^{\mathrm{inc}} \) :

Load increased in DRP (kW)

\( {\mathrm{load}}_{\mathrm{RTP}}^t \) :

Load demand considering real-time pricing of DRP

\( {\mathrm{load}}_{\mathrm{TOU}}^t \) :

Load demand considering time-of-use pricing of DRP (kW)

PDG(t):

Power generation by DG units at time t (kW)

PAC‐DC(t):

AC to DC converted power at time t (kW)

PDC‐AC(t):

DC to AC converted power at time t (kW)

\( {\mathrm{PEV}}_{\mathrm{charge}}^n(t) \) :

Charging power of PHEV at time t (kW)

\( {\mathrm{PEV}}_{\mathrm{dcharge}}^n(t) \) :

Discharging power of PHEV at time t (kW)

PGin(t):

Purchased power from external grid at time t (kW)

PGout(t):

Sold power to external grid at time t (kW)

SOCn(t):

State of charge of PHEV at time t (P.U.)

References

  1. S. Singh, S. Jagota, M. Singh, Energy management and voltage stabilization in an islanded microgrid through an electric vehicle charging station. Sustain. Cities Soc. 41, 679–694 (2018)

    Article  Google Scholar 

  2. Y. Zhang, F. Meng, R. Wang, W. Zhu, X.J. Zeng, A stochastic MPC based approach to integrated energy management in microgrids. Sustain. Cities Soc. 41, 349–362 (2018)

    Article  Google Scholar 

  3. A. Alfergani, A. Khalil, Z. Rajab, Networked control of AC microgrid. Sustain. Cities Soc. 37, 371–387 (2018)

    Article  Google Scholar 

  4. T. Dragičević, X. Lu, J.C. Vasquez, J.M. Guerrero, DC microgrids—Part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016 May)

    Article  Google Scholar 

  5. E. Unamuno, J.A. Barrena, Hybrid ac/dc microgrids—Part I: review and classification of topologies. Renew. Sust. Energ. Rev. 52, 1251–1259 (2015)

    Article  Google Scholar 

  6. E. Unamuno, J.A. Barrena, Hybrid ac/dc microgrids—Part II: review and classification of control strategies. Renew. Sust. Energ. Rev. 52, 1123–1134 (2015)

    Article  Google Scholar 

  7. H. Lotfi, A. Khodaei, Static hybrid AC/DC microgrid planning, in Innovative Smart Grid Technologies Conference (ISGT), 2016 IEEE Power & Energy Society (IEEE, 2016), pp. 1–5

    Google Scholar 

  8. H. Lotfi, A. Khodaei, Hybrid AC/DC microgrid planning. Energy 118, 37–46 (2017)

    Article  Google Scholar 

  9. V. Indragandhi, R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, P. Siarry, L. Uden, Multi-objective optimization and energy management in renewable based AC/DC microgrid. Comput. Electr. Eng. 70, 179–198 (2018)

    Article  Google Scholar 

  10. F. Nejabatkhah, Y.W. Li, Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 30(12), 7072–7089 (2015)

    Article  Google Scholar 

  11. P.T. Baboli, M. Shahparasti, M.P. Moghaddam, M.R. Haghifam, M. Mohamadian, Energy management and operation modelling of hybrid AC–DC microgrid. IET Gener. Transm. Distrib. 8(10), 1700–1711 (2014)

    Article  Google Scholar 

  12. M. Hosseinzadeh, F.R. Salmasi, Robust optimal power management system for a hybrid AC/DC microgrid. IEEE Trans. Sustain. Energy 6(3), 675–687 (2015)

    Article  Google Scholar 

  13. I. Komušanac, B. Ćosić, N. Duić, Impact of high penetration of wind and solar PV generation on the country power system load: the case study of Croatia. Appl. Energy 184, 1470–1482 (2016)

    Article  Google Scholar 

  14. S. Pereira, P. Ferreira, A.I. Vaz, Generation expansion planning with high share of renewables of variable output. Appl. Energy 190, 1275–1288 (2017)

    Article  Google Scholar 

  15. P. Sreedharan, J. Farbes, E. Cutter, C.K. Woo, J. Wang, Microgrid and renewable generation integration: University of California, San Diego. Appl. Energy 169, 709–720 (2016)

    Article  Google Scholar 

  16. Z. Chen, B. Xia, C. You, C.C. Mi, A novel energy management method for series plug-in hybrid electric vehicles. Appl. Energy 145, 172–179 (2015)

    Article  Google Scholar 

  17. G. Razeghi, S. Samuelsen, Impacts of plug-in electric vehicles in a balancing area. Appl. Energy 183, 1142–1156 (2016)

    Article  Google Scholar 

  18. M. Jin, W. Feng, P. Liu, C. Marnay, C. Spanos, MOD-DR: microgrid optimal dispatch with demand response. Appl. Energy 187, 758–776 (2017)

    Article  Google Scholar 

  19. S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program. Appl. Energy 187, 449–464 (2017)

    Article  Google Scholar 

  20. M.M. Eissa, First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources. Appl. Energy 212, 607–621 (2018)

    Article  Google Scholar 

  21. S. Nojavan, M. Majidi, N.N. Esfetanaj, An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management. Energy 139, 89–97 (2017)

    Article  Google Scholar 

  22. S. Nojavan, M. Majidi, A. Najafi-Ghalelou, M. Ghahramani, K. Zare, A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach. Energy Convers. Manag. 138, 383–392 (2017)

    Article  Google Scholar 

  23. S. Nojavan, H. Ghesmati, K. Zare, Robust optimal offering strategy of large consumer using IGDT considering demand response programs. Electr. Power Syst. Res. 130, 46–58 (2016)

    Article  Google Scholar 

  24. M.S. Ngan, C.W. Tan, Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renew. Sust. Energ. Rev. 16(1), 634–647 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Nourollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nourollahi, R., Zare, K., Nojavan, S. (2020). Energy Management of Hybrid AC-DC Microgrid Under Demand Response Programs: Real-Time Pricing Versus Time-of-Use Pricing. In: Nojavan, S., Zare, K. (eds) Demand Response Application in Smart Grids. Springer, Cham. https://doi.org/10.1007/978-3-030-32104-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32104-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32103-1

  • Online ISBN: 978-3-030-32104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics