Skip to main content

Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected \(O(n^2)\) Communication, and Optimal Resilience

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11598))

Included in the following conference series:

Abstract

We present new protocols for Byzantine agreement in the synchronous and authenticated setting, tolerating the optimal number of f faults among \(n=2f+1\) parties. Our protocols achieve an expected O(1) round complexity and an expected \(O(n^2)\) communication complexity. The exact round complexity in expectation is 10 for a static adversary and 16 for a strongly rushing adaptive adversary. For comparison, previous protocols in the same setting require expected 29 rounds.

A preliminary draft of the paper appeard on ePrint in 2017 [2]. The current version improves and subsumes the Byzantine agreement part of the preliminary draft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Katz and Koo [19] did not analyze communication complexity in their paper. Based on our understanding, their unrolled protocol in the appendix can achieve \(O(n^2)\) communication complexity by similarly incorporating threshold signatures and a quadratic common-coin protocol.

References

  1. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited. arXiv preprint, arXiv:1805.03391 (2018)

  2. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine agreement with expected \({O}(1)\) rounds, expected \({O}(n^2)\) communication, and optimal resilience. Cryptology ePrint Archive, Report 2018/1028 (2018). https://eprint.iacr.org/2018/1028

  3. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-message BFT devil. arXiv preprint arXiv:1803.05069 (2018)

  4. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: A blockchain protocol based on reconfigurable byzantine consensus. In: OPODIS, Solida (2017)

    Google Scholar 

  5. Adya, A., et al.: FARSITE: federated, available, and reliable storage for an incompletely trusted environment. ACM SIGOPS Oper. Syst. Rev. 36(SI), 1–14 (2002)

    Article  Google Scholar 

  6. Ben-Or, M.: Another advantage of free choice (extended abstract): completely asynchronous agreement protocols. In: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)

    Google Scholar 

  7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

    Google Scholar 

  8. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)

    Article  MathSciNet  Google Scholar 

  9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  10. Dolev, D., Halpern, J., Simons, B., Strong, R.: Dynamic fault-tolerant clock synchronization. J. ACM 42(1), 143–185 (1995)

    Article  Google Scholar 

  11. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. J. ACM (JACM) 32(1), 191–204 (1985)

    Article  MathSciNet  Google Scholar 

  12. Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)

    Article  MathSciNet  Google Scholar 

  13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  14. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

    Article  MathSciNet  Google Scholar 

  15. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982)

    Article  MathSciNet  Google Scholar 

  16. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 211–220. ACM (2003)

    Google Scholar 

  17. Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with an honest majority. In: Proceedings of the 19th Annual ACM STOC, vol. 87, pp. 218–229 (1987)

    Google Scholar 

  18. Gueta, G.G., et al.: SBFT: a scalable decentralized trust infrastructure for blockchains. arXiv preprint arXiv:1804.01626 (2018)

  19. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_27

    Chapter  Google Scholar 

  20. King, V., Saia, J.: Breaking the \(O(n^2)\) bit barrier: scalable Byzantine agreement with an adaptive adversary. J. ACM 58(4), 18 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium, pp. 279–296. USENIX Association (2016)

    Google Scholar 

  22. Kubiatowicz, J., et al.: OceanStore: an architecture for global-scale persistent storage. ACM Sigplan Not. 35(11), 190–201 (2000)

    Article  Google Scholar 

  23. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)

    Article  Google Scholar 

  24. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  Google Scholar 

  25. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed non-interactive adaptively-secure threshold signatures with short shares. Theoret. Comput. Sci. 645, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  26. Liu, S., Cachin, C., Quéma, V., Vukolic, M.: XFT: practical fault tolerance beyond crashes. In: 12th USENIX Symposium on Operating Systems Design and Implementation, pp. 485–500. USENIX Association (2016)

    Google Scholar 

  27. Loss, J., Moran, T.: Combining asynchronous and synchronous Byzantine agreement: the best of both worlds. Cryptology ePrint Archive 2018/235 (2018)

    Google Scholar 

  28. Micali, S.: ALGORAND: the efficient and democratic ledger. arXiv:1607.01341 (2016)

  29. Pass, R., Shi, E.: Feasibilities and infeasibilities for achieving responsiveness in permissionless consensus. In: International Symposium on Distributed Computing. Springer (2017)

    Google Scholar 

  30. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_1

    Chapter  Google Scholar 

  31. Rabin, M.O.: Randomized Byzantine generals. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pp. 403–409. IEEE (1983)

    Google Scholar 

  32. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  33. Zhou, L., Schneider, F., van Renesse, R.: COCA: a secure distributed online certification authority. ACM Trans. Comput. Syst. 20(4), 329–368 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dahlia Malkhi and Benjamin Chan for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L. (2019). Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected \(O(n^2)\) Communication, and Optimal Resilience. In: Goldberg, I., Moore, T. (eds) Financial Cryptography and Data Security. FC 2019. Lecture Notes in Computer Science(), vol 11598. Springer, Cham. https://doi.org/10.1007/978-3-030-32101-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32101-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32100-0

  • Online ISBN: 978-3-030-32101-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics