Interval-Valued Intuitionistic Fuzzy Sets pp 131-194 | Cite as
Applications of IVIFSs
Chapter
First Online:
- 133 Downloads
Abstract
Some applications of the IVIFSs will be discussed. In the period 1989–2000, as fas as the author knows, there were only 7 publications related to IVIFSs of other authors–Bustince and Burillo [61, 62, 63, 64, 65, 66] and Hong [139]. In the new centure, more than 200 papers over IVIFSs were published. The biggest part of them are related to some IVIFS-applications.
References
- 1.Abdullah, L., Ismail, W.K.W.: Hamming distance in intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets: a comparative analysis. Adv. Comput. Math. Appl. 1(1), 7–11 (2012)Google Scholar
- 2.Abdullah, S., Ayub, S., Hussain, I., Bedregal, B., Khan, M.: Analyses of S-boxes based on interval valued intuitionistic fuzzy sets and image encryption. Int. J. Comput. Intell. Syst. 10, 851–865 (2017). https://doi.org/10.2991/ijcis.2017.10.1.57CrossRefGoogle Scholar
- 3.Adak, A.K., Bhowmik, M.: Interval cut-set of interval-valued intuitionistic fuzzy sets. Afr. J. Math. Comput. Sci. Res. 4(4), 192–200 (2011)Google Scholar
- 4.Ahn, J.Y., Han, K.S., Oh, S.Y., Lee, C.D., An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache. Int. J. Innov. Comput. Inf. Control 7(5 B), 2755–2762 (2011)Google Scholar
- 5.Aikhuele, D.O., Turan, F.B.M.: An integrated fuzzy dephi and interval-valued intuitionistic fuzzy M-Topsis model for design concept selection. Pak. J. Stat. Oper. Res. 13(2), 425–438 (2017). https://doi.org/10.18187/pjsor.v13i2.1413CrossRefGoogle Scholar
- 6.Aikhuele, D.O., Turan, F.M., Odofin, S.M., Ansah, R.H.: Interval-valued Intuitionistic Fuzzy TOPSIS-based model for troubleshooting marine diesel engine auxiliary system. Trans. R. Instit. Nav. Arch. Part A: Int. J. Marit. Eng. 159, 107–114 (2017). https://doi.org/10.3940/rina.ijme.2016.al.402CrossRefGoogle Scholar
- 7.Akram, M., Dudek, W.: Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras. World Appl. Sci. J. 7(7), 812–819 (2009)Google Scholar
- 8.Alexieva, J., Choy, E., Koycheva, E.: Review and bibloigraphy on generalized nets theory and applications. In: Choy, E., Krawczak, M., Shannon, A., Szmidt, E. (eds.) A Survey of Generalized Nets. Raffles KvB Monograph No. 10, pp. 207–301 (2007)Google Scholar
- 9.An, X., Wang, Z., Li, H., Ding, J.: Project delivery system selection with interval-valued intuitionistic fuzzy set group decision-making method. Group Decis. Negot. 27(4), 689–707 (2018). https://doi.org/10.1007/s10726-018-9581-yCrossRefGoogle Scholar
- 10.Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems. Wiley, Hoboken (2010)CrossRefGoogle Scholar
- 11.Angelova, M., Pencheva, T.: Intercriteria analysis approach for comparison of simple and multi-population genetic algorithms performance. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol. 795, pp. 117–130 (2019)Google Scholar
- 12.Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from first type. Ann. “Inf.” Sect. Union Sci. Bulg. 8, 1–17 (2015/2016)Google Scholar
- 13.Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 23(5), 29–41 (2017)Google Scholar
- 14.Angelova, N., Zoteva, D., Atanassov, K.: Interval valued intuitionistic fuzzy generalized nets. Part 2. In: Proceedings of the 12th International Conference “Information Systems and Grid Technologies” ISGT’2018 (in press)Google Scholar
- 15.Angelova, M., Pencheva, T.: Intercriteria analysis of multi-population genetic algorithms performance. Ann. Comput. Sci. Inf. Syst. 13, 77–82 (2017)zbMATHGoogle Scholar
- 16.Angelova, M., Roeva, O., Pencheva, T.: Intercriteria analysis of crossover and mutation rates relations in simple genetic algorithm. Ann. Comput. Sci. Inf. Syst. 5, 419–424 (2015)Google Scholar
- 17.Angelova, M., Roeva, O., Pencheva, T.: Intercriteria analysis of a cultivation process model based on the genetic algorithm population size influence. Notes Intuit. Fuzzy Sets 21(4), 90–103 (2015)Google Scholar
- 18.Angelova, N., Stoenchev, M., Todorov, V.: Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuit. Fuzzy Sets Gen. Nets 13, 143–170 (2017)zbMATHGoogle Scholar
- 19.Atanassov K., Nikolov, N.: Intuitionistic fuzzy generalized nets: definitions, properties, applications. In: Melo-Pinto, P., Teodorescu, H.-N., Fukuda, T. (eds.) Systematic Organization of Information in Fuzzy Systems. IOS Press, Amsterdam, pp. 161–175 (2003)Google Scholar
- 20.Atanassov K., Sotirova, E.: Generalized Nets Theory, “Prof. M. Drinov”. Academic Publishing House, Sofia (2017) (in Bulgarian)Google Scholar
- 21.Atanassov, K., Atanassova, V., Chountas, P., Mitkova, M., Sotirova, E., Sotirov, S., Stratiev, D.: Intercriteria analysis over normalized data. In: Proceedings of the 8th IEEE Conference Intelligent Systems, Sofia, pp. 136–138 (2016). Accessed 4–6 Sept 2016Google Scholar
- 22.Atanassov, K., Intercriteria Analysis over Patterns. In: Sgurev, V., Piuri, V., Jotsov, V. (eds.) Learning Systems: From Theory to Practice, Studies in Computational Intelligence, Vol. 7 Mathematics 2018, 6, 123, 61–71. Springer, Cham (2018) https://doi.org/10.3390/math607012356
- 23.Atanassov, K., Sotirov, S., Kodogiannis, V.: Intuitionistic fuzzy estimations of the Wi-Fi connections. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets, and Knowledge Engineering, London, pp. 75–80 (2006). Accessed 6–7 Sept 2006Google Scholar
- 24.Atanassov, K., Sotirov, S., Krawczak, M.: Generalized net model of the intuitionistic fuzzy feed forward neural network. Notes Intuit. Fuzzy Sets 15(2), 18–23 (2009)Google Scholar
- 25.Atanassov, K., Sotirova, E., Andonov, V.: Generalized net model of multicriteria decision making procedure using intercriteria analysis. In:- Advances in Fuzzy Logic and Technology, vol. 1, pp. 99–111. Springer, Cham (2017)Google Scholar
- 26.Atanassov, K., Zoteva, D., Angelova, N.: Interval valued intuitionistic fuzzy generalized nets. Part 1. Noten Intuit. Fuzzy Sets 24(3), 111–123 (2018)Google Scholar
- 27.Atanassov, K., E. Szmidt, J. Kacprzyk, V., Atanassova. An approach to a constructive simplification of multiagent multicriteria decision making problems via intercriteria analysis. Comptes Rendus de l’Academie Bulgare des Sciences 70(8), 1147–1156 (2017)Google Scholar
- 28.Atanassov, K.: Extended interval valued intuitionistic fuzzy index matrices. In: Atanassov, K.T., Kacprzyk, J. et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross fertilization, New Models and Applications. Springer, Cham (2019)Google Scholar
- 29.Atanassov, K.: Generalized nets as a tool for the modelling of data mining processes. In: Sgurev, V., Yager, R., Kacprzyk, J., Jotsov, V.: Innovative Issues in Intelligent Systems, pp. 161–215. Springer, Cham (2016)Google Scholar
- 30.Atanassov, K.: Generalized Nets in Artificial Intelligence. Vol. 1: Generalized Nets and Expert Systems, “Prof. M. Drinov”. Academic Publishing House, Sofia (1998)Google Scholar
- 31.Atanassov, K.: On Generalized Nets Theory, “Prof. M. Drinov” Academic Publishing House, Sofia (2007)Google Scholar
- 32.Atanassov, K.: The Generalized nets and the other graphical means for modelling. AMSE Rev. 2(1), 59–64 (1985)Google Scholar
- 33.Atanassov, K. Generalized index matrices. – Compt. Rend. de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)Google Scholar
- 34.Atanassov, K, Marinov, P., Atanassova, V.: Intercriteria analysis with interval valued intuitionistic fuzzy evaluations: symmetric case. In: 13th International Conference on Flexible Query Answering Systems, Amantea, Italy (submitted) (2019). Accessed 2–5 July 2019Google Scholar
- 35.Atanassov, K.: Generalized Nets. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
- 36.Atanassov, K.: Remark on intuitionistic fuzzy expert systems. BUSEFAL 59, 71–76 (1994)Google Scholar
- 37.Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)zbMATHCrossRefGoogle Scholar
- 38.Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
- 39.Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer, Cham (2014)zbMATHGoogle Scholar
- 40.Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl.-Based Syst. 80, 122–130 (2015)CrossRefGoogle Scholar
- 41.Atanassov, K.: Interval valued intuitionistic fuzzy graphs. Notes Intuit. Fuzzy Sets 25(1), 21–31 (2019)MathSciNetCrossRefGoogle Scholar
- 42.Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuit. Fuzzy Sets Gen. Nets 11, 1–8 (2014)Google Scholar
- 43.Atanassov, K., Atanassova, V., Gluhchev, G.: Intercriteria analysis: ideas and problems. Notes Intuit. Fuzzy Sets 21(1), 81–88 (2015)zbMATHGoogle Scholar
- 44.Atanassova V., Roeva, O.: Computational complexity and influence of numerical precision on the results of intercriteria analysis in the decision making process. Notes Intuit. Fuzzy Sets 24(3), 53–63 (2018)CrossRefGoogle Scholar
- 45.Atanassova, V., Doukovska, L., Michalikova, A., Radeva, I.: Intercriteria analysis: from pairs to triples. Notes Intuit. Fuzzy Sets 22, 5 (2016). ISSN:Print ISSN 1310-4926; Online ISSN 2367-8283, 98-110Google Scholar
- 46.Atanassova, V.: Interpretation in the Intuitionistic Fuzzy Triangle of the Results, Obtained by the InterCriteria Analysis, 16th World Congress of the International Fuzzy Systems Association (IFSA), 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30. 06-03. 07. 2015, Gijon, Spain, pp. 1369–1374 (2015). https://doi.org/10.2991/ifsa-eusflat-15.2015.193
- 47.Atanassova, L.: On interval-valued intuitionistic fuzzy versions of L. Zadeh’s extension principle. Issues Intuit. Fuzzy Sets Gen. Nets 7, 13–19 (2008)Google Scholar
- 48.Atanassova, V., Doukovska, L., de Tre, G., Radeva, I.: Intercriteria analysis and comparison of innovation-driven and efficiency-to-innovation driven economies in the European Union. Notes Intuit. Fuzzy Sets 23(3), 54–68 (2017)Google Scholar
- 49.Atanassova, V., Doukovska, L., Kacprzyk, A., Sotirova, E., Radeva, I., Vassilev, P.: Intercriteria analysis of the global competitiveness reports: from efficiency- to innovation-driven economies. J. Mult.-Valued Logic Soft Comput. 31(5–6), 469–494 (2018)Google Scholar
- 50.Aygünoǵlu, A., Varol, B.P., Cetkin, V., Aygün, H.: Interval valued intuitionistic fuzzy subgroups based on interval valued double t norm. Neural Comput. Appl. 21(SUPPL. 1), 207–214 (2012)CrossRefGoogle Scholar
- 51.Berti-Equille, L.: Measuring and modelling data quality for quality-awareness in data mining. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 101–126. Springer, Berlin (2007)CrossRefGoogle Scholar
- 52.Bhowmik, M., Pal, M.: Some results on generalized interval valued intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 14 (2), 193–203 (2012)Google Scholar
- 53.Biswas, A., Kumar, S.: An integrated TOPSIS approach to MADM with interval-valued intuitionistic fuzzy settings. Adv. Intell. Syst. Comput. 706, 533–543 (2018). https://doi.org/10.1007/978-981-10-8237-5_52Google Scholar
- 54.Bolturk, E., Kahraman, C. Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location selection problem. J. Intell. Fuzzy Syst. 35(4), 4865–4877 (2018). https://doi.org/10.3233/JIFS-18979CrossRefGoogle Scholar
- 55.Bramer, M.: Principles of Data Mining. Springer, London (2013)zbMATHCrossRefGoogle Scholar
- 56.Bull, L., Ester, B.-M., Holmes, J.: Learning classifier systems in data mining: an introduction, In: Bull, L., Ester, B.-M., Holmes, J. (eds.) Learning Classifier Systems in Data Mining, pp. 1–15. Springer, Berlin (2008)zbMATHGoogle Scholar
- 57.Bureva, V., Michalìkovà, A., Sotirova, E., Popov, S., Riečan, B., Roeva, O.: Application of the InterCriteria Analysis to the universities rankings system in the Slovak Republic. Notes Intuit. Fuzzy Sets 23(2), 128–140 (2017)Google Scholar
- 58.Bureva, V., Sotirova, E., Atanassova, V., Angelova, N., Atanassov, K.: Intercriteria Analysis over Intuitionistic Fuzzy Data. Lecture Notes in Computer Science, vol. 10665, pp. 333–340. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-73441-5_35CrossRefGoogle Scholar
- 59.Bureva, V., Sotirova, E., Panayotov, H.: The intercriteria decision making method to Bulgarian university ranking system. Ann. Inf. Sect., Union Sci. Bulg. 8, 54–70 (2015–2016)Google Scholar
- 60.Bureva, V., Sotirova, E., Sotirov, S., Mavrov, D.: Application of the intercriteria decision making method to Bulgarian universities ranking. Notes Intuit. Fuzzy Sets 21(2), 111–117 (2015)Google Scholar
- 61.Burillo P., Bustince H., Two operators on interval-valued intuitionistic fuzzy sets: Part II, Comptes rendus de l’Academie bulgare des Sciences, Tome 48, 1995, No. 1, 17-20Google Scholar
- 62.Burillo P., Bustince H., Two operators on interval-valued intuitionistic fuzzy sets: Part I, Comptes rendus de l’Academie bulgare des Sciences, Tome 47, 1994, No. 12, 9-12Google Scholar
- 63.Burillo, P., Bustince, H.: Informational energy on intuitionistic fuzzy sets and on interval-values intuitionistic fuzzy sets (\(\Phi \)-fuzzy). Relationship between the measures of information. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, pp. 46–49 (1994). Accessed 28–30 Sept. 1994Google Scholar
- 64.Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 78(3), 305–316 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Bustince, H.: Numerical information measurements in interval-valued intuitionistic fuzzy sets (IVIFS). In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, pp. 50–52. Accessed 28–30 Sept. 1994Google Scholar
- 66.Bustince, H., Burillo, P.: Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 74(2), 237–244 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Büyüközkan, G., Feyaioǧlu, O.: Accelerating the new product introduction with intelligent data mining, In: Ruan, D., Chen, G., Kerre, E., Wets, G. (eds.) Intelligent Data Mining: Techniques and Applications, pp. 337–354. Springer, Berlin (2005)CrossRefGoogle Scholar
- 68.Büyüközkan, G., Göcer, F., Feyzioǧlu, O.: Cloud computing technology selection based on interval-valued intuitionistic fuzzy MCDM methods. Soft Comput. 22(15), 5091–5114 (2018). https://doi.org/10.1007/s00500-018-3317-4CrossRefGoogle Scholar
- 69.Büyüközkan, G., Göcer, F.: An extension of ARAS methodology under Interval Valued Intuitionistic Fuzzy environment for Digital Supply Chain. Appl. Soft Comput. J. 69, 634–654 (2018). doi: https://doi.org/10.1016/j.asoc.2018.04.040CrossRefGoogle Scholar
- 70.Büyüközkan, G., Göcer, F.: An extension of MOORA approach for group decision making based on interval valued intuitionistic fuzzy numbers in digital supply chain. In: Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17-th World Congress of International, INSPEC Accession Number: 17151170, pp. 1–6 (2017). https://doi.org/10.1109/IFSA-SCIS.2017.8023358
- 71.Büyüközkan, G., Göcer, F.: Smart medical device selection based on interval valued intuitionistic fuzzy VIKOR. Adv. Intell. Syst. Comput. 641, 306–317 (2018). https://doi.org/10.1007/978-3-319-66830-7_28CrossRefGoogle Scholar
- 72.Büyüközkan, G., Göcer, F., Feyzioǧlu, O.: Cloud computing technology selection based on interval valued intuitionistic fuzzy COPRAS. Adv. Intell. Syst. Comput. 641, 318–329 (2018). https://doi.org/10.1007/978-3-319-66830-7_29CrossRefGoogle Scholar
- 73.Callejas Bedrega, B., Visintin, L., Reiser, R.H.S.: Index, expressions and properties of interval-valued intuitionistic fuzzy implications. Trends Appl. Comput. Math. 14(2), 193–208 (2013)Google Scholar
- 74.Cao, Y.-X., Zhou, H., Wang, J.-Q.: An approach to interval-valued intuitionistic stochastic multi-criteria decision-making using set pair analysis. Int. J. Mach. Learn. Cybern. 9(4), 629–640 (2018). https://doi.org/10.1007/s13042-016-0589-9CrossRefGoogle Scholar
- 75.Chen, X.-H., Dai, Z.-J., Liu, X.: Approach to interval-valued intuitionistic fuzzy decision making based on entropy and correlation coefficient. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 35(4), 791–795 (2013)Google Scholar
- 76.Chen, S.M., Lee, L.W., Liu, H.C., Yang, S.W.: Multiattribute decision making based on interval valued intuitionistic fuzzy values. Expert Syst. Appl. 39(12), 10343–10351 (2012)CrossRefGoogle Scholar
- 77.Chen, S.-M., Lee, L.-W.: A new method for multiattribute decision making using interval-valued intuitionistic fuzzy values In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016695, pp. 148–153 (2011)Google Scholar
- 78.Chen, S. M., Li, T. S., Yang, S. W., Sheu, T. W. A new method for evaluating students’ answerscripts based on interval valued intuitionistic fuzzy sets (2012) Proceedings International Conference on Machine Learning and Cybernetics, 4, art. no. 6359580, 1461-1467Google Scholar
- 79.Chen, S.-M., Yang, M.-W., Liau, C.-J.: A new method for multicriteria fuzzy decision making based on ranking interval-valued intuitionistic fuzzy values. In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016698, pp. 154–159 (2011)Google Scholar
- 80.Chen, X., Yang, L., Wang, P., Yue, W.: A fuzzy multicriteria group decision-making method with new entropy of interval-valued intuitionistic fuzzy sets. J. Appl. Math. art. no. 827268 (2013)Google Scholar
- 81.Chen, X., Yang, L., Wang, P., Yue, W.: An effective interval-valued intuitionistic fuzzy entropy to evaluate entrepreneurship orientation of online P2P lending platforms. Adv. Math. Phys. art. no. 467215 (2013)Google Scholar
- 82.Chen, S.M., Yang, M.W., Yang, S.W., Sheu, T.W., Liau, C.J.: Multicriteria fuzzy decision making based on interval valued intuitionistic fuzzy sets. Expert Syst. Appl. 39(15), 12085–12091 (2012)CrossRefGoogle Scholar
- 83.Chen, T.-Y.: Data construction process and qualiflex-based method for multiple-criteria group decision making with interval-valued intuitionistic fuzzy sets. Int. J. Inf. Technol. Decis. Mak. 12(3), 425–467 (2013)CrossRefGoogle Scholar
- 84.Chen, T.-Y.: An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowl.-Based Syst. 45, 134–146 (2013)CrossRefGoogle Scholar
- 85.Chen, S.-M., Han, W.-H.: An improved MADM method using interval-valued intuitionistic fuzzy values. Inf. Sci. 467, 489–505 (2018). https://doi.org/10.1016/j.ins.2018.07.062MathSciNetCrossRefGoogle Scholar
- 86.Chen, S.-M., Han, W.-H.: A new multiattribute decision making method based on multiplication operations of interval-valued intuitionistic fuzzy values and linear programming methodology. Inf. Sci. 429, 421–432 (2018). https://doi.org/10.1016/j.ins.2017.11.018MathSciNetCrossRefGoogle Scholar
- 87.Chen, S.-M., Li, T.-S.: Evaluating students’ answerscripts based on interval-valued intuitionistic fuzzy sets. Inf. Sci. 235, 308–322 (2013)CrossRefGoogle Scholar
- 88.Chen, Q., Xu, Z., Liu, S., et al.: A method based on interval-valued intuitionistic fuzzy entropy for multiple attribute decision making. Inf. Int. Interdiscip. J. 13(1), 67–77 (2010)Google Scholar
- 89.Chen, T.-Y., Wang, H.-P., Lu, Y.-Y.: A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: a comparative perspective. Expert Syst. Appl. 38(6), 7647–7658 (2011)CrossRefGoogle Scholar
- 90.Chen, S.-M., Kuo, L.-W., Zou, X.-Y.: Multiattribute decision making based on Shannon’s information entropy, non-linear programming methodology, and interval-valued intuitionistic fuzzy values. Inf. Sci. 465, 404–424 (2018). https://doi.org/10.1016/j.ins.2018.06.047MathSciNetCrossRefGoogle Scholar
- 91.Cheng, S.-H.: Autocratic multiattribute group decision making for hotel location selection based on interval-valued intuitionistic fuzzy sets. Inf. Sci. 427, 77–87 (2018). https://doi.org/10.1016/j.ins.2017.10.018MathSciNetCrossRefGoogle Scholar
- 92.Chountas, P., Kolev, B., Rogova, E., Tasseva, V., Atanassov, K.: Generalized Nets in Artificial Intelligence. Vol. 4: Generalized nets, Uncertain Data and Knowledge Engineering. “Prof. M. Drinov”. Academic Publishing House, Sofia (2007)Google Scholar
- 93.Chountas, P., Sotirova, E., Kolev, B., Atanassov, K.: On intuitionistic fuzzy expert systems with temporal components. In: Computational Intelligence, Theory and Applications, pp. 241–249. Springer, Berlin (2006)Google Scholar
- 94.Chu, J., Liu, X., Wang, L., Wang, Y.: A group decision making approach based on newly defined additively consistent interval-valued intuitionistic preference relations. Int. J. Fuzzy Syst. 20(3), 1027–1046 (2018). https://doi.org/10.1007/s40815-017-0353-7MathSciNetCrossRefGoogle Scholar
- 95.Cios, K., Pedrycz, W., Swiniarski, R.: Data Mining Methods for Knowledge Discovery. Kluwer (1998)Google Scholar
- 96.Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data Mining. A Knowledge Discovery Approach. Springer, New York (2007)zbMATHGoogle Scholar
- 97.Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
- 98.Dahan, H., Cohen, S., Rokach, L., Maimon, O.: Proactive Data Mining with Decision Trees. Springer, New York (2014)CrossRefGoogle Scholar
- 99.Deschrijver, G., Kerre, E.: Aggregation operators in interval-valued fuzzy and Atanassov’s intuitionistic fuzzy set theory. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 183–203. Springer, Berlin (2008)Google Scholar
- 100.Doukovska, L., Atanassova, V., Shahpazov, G., Capkovic, F.: InterCriteria analysis applied to variuos EU enterprises. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design, Milan, Italy, pp. 284–291 (2015)Google Scholar
- 101.Doukovska, L., Atanassova, V., Sotirova, E., Vardeva, I., Radeva, I.: Defining consonance thresholds in intercriteria analysis: an overview. In Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, pp. 161–179. Springer, Cham (2019)Google Scholar
- 102.Doukovska, L., Atanassova, V.: InterCriteria Analysis approach in radar detection threshold analysis. Notes Intuit. Fuzzy Sets 21(4), 129–135 (2015). ISSN: 1310-4926Google Scholar
- 103.Doukovska, L., Shahpazov, G., Atanassova, V.: Intercriteria analysis of the creditworthiness of SMEs. A case study. Notes Intuit. Fuzzy Sets 22(2), 108–118 (2016)Google Scholar
- 104.Dymova, L., Sevastjanov, P., Tikhonenko, A.: A new method for comparing interval valued intuitionistic fuzzy values. Lecture Notes in Computer Science, vol. 7267 LNAI (PART 1), pp. 221–228 (2012)Google Scholar
- 105.Dymova, L., Sevastjanov, P., Tikhonenko, A.: Two-criteria method for comparing real-valued and interval-valued intuitionistic fuzzy values. Knowl.-Based Syst. 45, 166–173 (2013)CrossRefGoogle Scholar
- 106.El Alaoui, M., Ben-Azza, H., El Yassini, K.: Optimal weighting method for interval-valued intuitionistic fuzzy opinions. Notes Intuit. Fuzzy Sets 24(3), 106–110 (2018)Google Scholar
- 107.Eyoh, I., John, R., De Maere, G.: Interval type-2 intuitionistic fuzzy logic for regression problems. IEEE Trans. Fuzzy Syst. 26(4), Article number 8115302, 2396–2408 (2018)CrossRefGoogle Scholar
- 108.Eyoh, I., John, R., De Maere, G.: Time series forecasting with interval type-2 intuitionistic fuzzy logic systems. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), INSPEC Accession Number: 17137939 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015463
- 109.Fan, L., Lei, Y.-J.: Probability of interval-valued intuitionistic fuzzy events and its general forms. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 33(2), 350–355 (2011)zbMATHGoogle Scholar
- 110.Fan, L., Lei, Y.-J., Duan, S.-L.: Interval-valued intuitionistic fuzzy statistic adjudging and decision-making. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 31(9), 1790–1797 (2011)Google Scholar
- 111.Feyzioǧlu, O., Fethullah, G., Gulcin, B.: “Interval-valued intuitionistic fuzzy MULTIMOORA approach for new product development.” In: World Scientific Proceedings Series on Computer Engineering and Information Science: Volume 11. Data Science and Knowledge Engineering for Sensing Decision Support, pp. 1066–1073 (2018). https://doi.org/10.1142/9789813273238_0135
- 112.Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start startegies. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 547–550 (2016)Google Scholar
- 113.Fidanova, S., Roeva, O.: Comparison of different metaheuristic algorithms based on intercriteria analysis. J. Comput. Appl. Math. 340, 615–628 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 114.Fidanova, S., Roeva, O.: Intercriteria analysis of different variants of ACO algorithm for wireless sensor network positioning. Lect. Notes Comput. Sci. 11189, 88–96 (2019)CrossRefGoogle Scholar
- 115.Fidanova, S., Roeva, O., Mucherino, A., Kapanova, K.: Intercriteria analysis of ant algorithm with environment change for GPS surveying problem. Lect. Notes Comput. Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9883, 271–278 (2016)Google Scholar
- 116.Freitas, A.A.: A review of evolutionary algorithms for data mining. In: Maimon, O., Rokach, L. (eds.) Data and Knowledge Discovery Handbook, 2nd edn. pp. 371–400. Springer, New York (2010)CrossRefGoogle Scholar
- 117.Fu, S. et al.: Interval-valued intuitionistic fuzzy multi-attribute decision-making method based on prospect theory and grey correlation. Recent Pat. Comput. Sci. 11(3), 215–221 (2018)CrossRefGoogle Scholar
- 118.Garg, H., Kumar, K.: Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. J. Ind. Manag. Optim. 466–482 (2018). https://doi.org/10.3934/jimo.2018162MathSciNetCrossRefGoogle Scholar
- 119.Garg, H.: Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. J. Ind. Manag. Optim. 14(1), 283–308 (2018). https://doi.org/10.3934/jimo.2017047MathSciNetzbMATHCrossRefGoogle Scholar
- 120.Garg, H., Agarwal, N., Tripathi, A.: Some improved interactive aggregation operators under interval-valued intuitionistic fuzzy environment and their application to decision making process. Sci. Iran. E 24(5), 2581–2604 (2017). https://doi.org/10.24200/sci.2017.4386CrossRefGoogle Scholar
- 121.Georgieva, V., Angelova, N., Roeva, O., Pencheva, T.: Intercriteria analysis of wastewater treatment quality. J. Int. Sci. Publ.: Ecol. Saf. 10, 365–376 (2016)Google Scholar
- 122.Gong, Z., Ma, Y.: Multicriteria fuzzy decision making method under interval-valued intuitionistic fuzzy environment. In: International Conference on Machine Learning and Cybernetics, Baoding, 12–15 July 2009, vols. 1–6, 728–731 (2009)Google Scholar
- 123.Gong, Z.-T., Xie, T., Shi, Z.-H., Pan, W.-Q.: A multiparameter group decision making method based on the interval-valued intuitionistic fuzzy soft set. In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016727, pp. 125–130 (2011)Google Scholar
- 124.Gou, X., Xu, Z.: Exponential operations for intuitionistic fuzzy numbers and interval numbers in multi-attribute decision making. Fuzzy Optim. Decis. Mak. 16(2), 183–204 (2017). https://doi.org/10.1007/s10700-016-9243-yMathSciNetCrossRefzbMATHGoogle Scholar
- 125.Granichin, O., Volkovich, Z., Toledano-Kitai, D.: Randomized Algorithms in Automatic Control and Data Mining. Springer, Berlin (2015)CrossRefGoogle Scholar
- 126.Grosan, V., Abraham, A.: Intelligent Systems—A Modern Approach. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
- 127.Grzymala-Busse, J.W.: Rule induction. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp. 249–265. Springer, New York (2010)CrossRefGoogle Scholar
- 128.Gu, X., Wang, Y., Yang, B.: Method for selecting the suitable bridge construction projects with interval-valued intuitionistic fuzzy information. Int. J. Digit. Content Technol. Appl. 5(7), 201–206 (2011)CrossRefGoogle Scholar
- 129.Gupta, P., Mehlawat, M.K., Grover, N., Pedrycz, W.: Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Appl. Soft Comput. J. 69, 554–567 (2018). https://doi.org/10.1016/j.asoc.2018.04.032CrossRefGoogle Scholar
- 130.Hadjyisky L., Atanassov K., Generalized net model of the intuitionistic fuzzy neural networks. Advances in Modelling & Analysis, vol. 23, No. 2, pp. 59–64. AMSE Press (1995)Google Scholar
- 131.Hadjyisky, L., Atanassov, K.: Intuitionistic fuzzy model of a neural network. BUSEFAL 54, 36–39 (1993)Google Scholar
- 132.Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006)Google Scholar
- 133.Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press (2001)Google Scholar
- 134.Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning—Data Mining, Inference and Prediction. Springer, New York (2001)zbMATHGoogle Scholar
- 135.Hedayati, H.: Interval-valued intuitionistic fuzzy subsemimodules with (S; T)-norms. Ital. J. Pure Appl. Math. 27, 157–166 (2010)MathSciNetzbMATHGoogle Scholar
- 136.Hilderman, R., Peckham, T.: Statistical methodologies from mining potentially interesting contrast sets. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 153–177. Springer, Berlin (2007)CrossRefGoogle Scholar
- 137.Holmes, D., Tweedale, J., Jain, L.: Data mining techniques in clustering, association and classification. In: Holmes, D., Jain, L. (eds.) Data Mining: Foundations and Intelligent Paradigms, Vol. 1: Clustering, Association and Classification, pp. 1–6. Springer, Berlin (2012)Google Scholar
- 138.Hong, T.-P., Chen, C.-H., Wu, Y.-L., Tseng, V.S.: Fining active membership functions in fuzzy data mining. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 179–196. Springer, Berlin (2008)CrossRefGoogle Scholar
- 139.Hong, D.H.: A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 95(1), 113–117 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 140.Hu, L.: An approach to construct entropy and similarity measure for interval valued Intuitionistic fuzzy sets. In: Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, art. no. 6244285, pp. 1777–1782 (2012)Google Scholar
- 141.Hui, F., Shi, X., Yang, L. A novel efficient approach to evaluating the security of wireless sensor network with interval valued intuitionistic fuzzy information. Adv. Inf. Sci. Serv. Sci. 4(7), 83–89 (2012)Google Scholar
- 142.Huo, L., Liu, B., Cheng, L.: Method for interval-valued intuitionistic fuzzy multicriteria decision making with gray relation analysis. In: International Conference on Engineering and Business Management, Chengdu, 25–27 Mar 2010, pp. 1342–1345 (2010)Google Scholar
- 143.Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData—Software for InterCriteria analysis. Int. J. Bioautomation 22(1), 1–10 (2018)Google Scholar
- 144.Izadikhah, M., Group DecisionMaking process for supplier selection with TOPSISMethod under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012, Article ID 407942, 14 pages. https://doi.org/10.1155/2012/407942MathSciNetzbMATHCrossRefGoogle Scholar
- 145.Joshi, D., Kumar, S.: Improved accuracy function for interval-valued intuitionistic fuzzy sets and its application to multi–attributes group decision making. Cybern. Syst. 49(1), 64–76 (2018). https://doi.org/10.1080/01969722.2017.1412890MathSciNetCrossRefGoogle Scholar
- 146.Joshi, D.K., Bisht, K., Kumar, S.: Interval-valued intuitionistic uncertain linguistic information-based TOPSIS method for multi-criteria group decision-making problems. Adv. Intell. Syst. Comput. 696, 305–315 (2018). https://doi.org/10.1007/978-981-10-7386-1_27CrossRefGoogle Scholar
- 147.Kacprzyk, A., Sotirov, S., Sotirova, E., Shopova, D., Georgiev, P.: Application of intercriteria analysis in the finance and accountancy positions. Notes Intuit. Fuzzy Sets 23(4), 84–90 (2017)Google Scholar
- 148.Kasabov, N.: Evolving Connectionist Systems. Springer, London (2007)zbMATHGoogle Scholar
- 149.Kaufmann, A.: Introduction a la Theorie des Sour-Ensembles Flous. Masson, Paris (1977)zbMATHGoogle Scholar
- 150.Kavita, Y., Kumar, S.: A multi-criteria interval-valued intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Lect. Notes Artif. Intell. 5908, 303–312 (2009)Google Scholar
- 151.Kecman, V.: Learning and Soft Computing. MIT Press (2001)Google Scholar
- 152.Klosgen, W., Zytkow, J. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)zbMATHGoogle Scholar
- 153.Kolev, B., El-Darzi, E., Sotirova, E., Petronias, I., Atanassov, K., Chountas, P., Kodogianis, V.: Generalized Nets in Artificial Intelligence. Vol. 3: Generalized nets, Relational Data Bases and Expert Systems. “Prof. M. Drinov” Academic Publishing House, Sofia (2006)Google Scholar
- 154.Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. Novel Developments in Uncertainty Representation and Processing, Advances in Intelligent Systems and Computing, pp. 365–372. Springer (2016)Google Scholar
- 155.Krawczak, M., El-Darzi, E., Atanassov, K., Tasseva, V.: Generalized net for control and optimization of real processes through neural networks using intuitionistic fuzzy estimations. Notes Intuit. Fuzzy Sets 13(2), 54–60 (2007)Google Scholar
- 156.Krishankumar, R., Ravichandran, K., Ramprakash, R.: A scientific decision framework for supplier selection under interval valued intuitionistic fuzzy environment. Math. Probl. Eng. 2017, Article ID 1438425, 18 pages (2017)Google Scholar
- 157.Krumova, S., Todinova, S., Mavrov, D., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.: Intercriteria analysis of calorimetric data of blood serum proteome. Biochimica et Biophysica Acta-Gen. Subj. 2017, 409–417 (1861)Google Scholar
- 158.Kumar, S., Biswas, A.: TOPSIS based on linear programming for solving MADM problems in interval-valued intuitionistic fuzzy settings. In: Proceedings of the 4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018, pp. 1–6 (2018). https://doi.org/10.1109/RAIT.2018.8389071
- 159.Kumar, K., Garg, H.: TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37(2), 1319–1329 (2018). https://doi.org/10.1007/s40314-016-0402-0MathSciNetzbMATHCrossRefGoogle Scholar
- 160.Kuncheva L., Atanassov, A.: An intuitionistic fuzzy RBF network. In: Proceedings of EUFIT’96, Aachen, 2–5 Sept 1996, pp. 777–781 (1996)Google Scholar
- 161.Li, J., Chen, W., Yang, Z., Li, C., Sellers, J.S.: Dynamic interval-valued intuitionistic normal fuzzy aggregation operators and their applications to multi-attribute decision-making. J. Intell. Fuzzy Syst. 35(4), 3937–3954 (2018). https://doi.org/10.3233/JIFS-169717CrossRefGoogle Scholar
- 162.Li, J., Lin, M., Chen, J.: ELECTRE method based on interval valued intuitionistic fuzzy number. Appl. Mech. Mater. 220–223, 2308–2312 (2012)CrossRefGoogle Scholar
- 163.Li, P., Liu, S.F., Fang, Z.G.: Interval valued intuitionistic fuzzy numbers decision making method based on grey incidence analysis and MYCIN certainty factor. Kongzhi yu Juece/Control Decis. 27(7), 1009–1014 (2012)Google Scholar
- 164.Li, Y., Yin, J., Wu, G.: Model for evaluating the computer network security with interval valued intuitionistic fuzzy information. Int. J. Digit. Content Technol. Appl. 6(6), 140–146 (2012)Google Scholar
- 165.Li, J., Zhang, X.-L., Gong, Z.-T.: Aggregating of interval-valued intuitionistic uncertain linguistic variables based on archimedean t-norm and it applications in group decision makings. J. Comput. Anal. Appl. 24(5), 874–885 (2018)Google Scholar
- 166.Li, D.-F.: Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Syst. Appl. 37(8), 5939–5945 (2010)CrossRefGoogle Scholar
- 167.Li, D.-F.: TOPSIS-Based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 18(2), 299–311 (2010)Google Scholar
- 168.Li, D.-F.: Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations. Fuzzy Optim. Decis. Mak. 10(1), 45–58 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 169.Li, D.-F.: Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information. Appl. Soft Comput. J. 11(4), 3402–3418 (2011)CrossRefGoogle Scholar
- 170.Li, D.-F.: Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations. Fuzzy Optim. Decis. Mak. 10, 45–58 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 171.Li, P., Liu, S.-F.: Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D-S theory of evidence. Acta Automatica Sinica 37(8), 993–998 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 172.Li, K.W., Wang, Z.: Notes on “multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment”. J. Syst. Sci. Syst. Eng. 19(4), 504–508 (2010)CrossRefGoogle Scholar
- 173.Li, B., Yue, X., Zhou, G.: Model for supplier selection in interval-valued intuitionistic fuzzy setting. J. Converg. Inf. Technol. 6(11), 12–16 (2011)Google Scholar
- 174.Lin, J., Zhang, Q.: Some continuous aggregation operators with interval-valued intuitionistic fuzzy information and their application to decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(2), 185–209 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 175.Lin, J., Zhang, Q.: Note on continuous interval-valued intuitionistic fuzzy aggregation operator. Appl. Math. Model. 43, 670–677 (2017). https://doi.org/10.1016/j.apm.2016.09.003MathSciNetCrossRefGoogle Scholar
- 176.Liu, D., Chen, X., Peng, D.: Interval-Valued intuitionistic fuzzy ordered weighted cosine similarity measure and its application in investment decision-making. Complexity 2017, Article ID 1891923, 11 pages (2017). https://doi.org/10.1155/2017/1891923MathSciNetzbMATHGoogle Scholar
- 177.Liu, J., Deng, X., Wei, D., Li , Y., Deng, Y.: Multi attribute decision making method based on interval valued intuitionistic fuzzy sets and D S theory of evidence. In: 24th Chinese, Date of Conference Control and Decision Conference (CCDC), 23–25 May 2012, pp. 2651–2654 (2012)Google Scholar
- 178.Liu, J., Li, Y., Deng, X., Wei, D., Deng, Y.: Multi attribute Decision making based on interval valued intuitionistic fuzzy sets. J. Inf. Comput. Sci. 9(4), 1107–1114 (2012)Google Scholar
- 179.Liu, J., Li, Y., Deng, X., Wei, D., Deng, Y.: Multi-attribute decision-making based on interval-valued intuitionistic fuzzy sets. J. Inf. Comput. Sci. 9(4), 1107–1114 (2012)Google Scholar
- 180.Liu, Z., Teng, F., Liu, P., Ge, Q.: Interval-valued intuitionistic fuzzy power Maclaurin symmetric mean aggregation operators and their application to multiple attribute group decision-making. Int. J. Uncertain. Quantif. 8(3), 211–232 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020702MathSciNetCrossRefGoogle Scholar
- 181.Liu, P., Wang, P.: Some interval-valued intuitionistic fuzzy Schweizer–Sklar power aggregation operators and their application to supplier selection. Int. J. Syst. Sci. 49(6), 1188–1211. https://doi.org/10.1080/00207721.2018.1442510MathSciNetCrossRefGoogle Scholar
- 182.Liu, P.: Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators. Comput. Ind. Eng. 108, 199–212 (2017). https://doi.org/10.1016/j.cie.2017.04.033CrossRefGoogle Scholar
- 183.Liu, Y., Bi, J., Fan, Z.: A method for ranking products through online reviews based on sentiment classification and interval-valued intuitionistic fuzzy TOPSIS. J. Inf. Technol. Decis. Mak. 16(06), 1497–1522 (2017). https://doi.org/10.1142/S021962201750033XCrossRefGoogle Scholar
- 184.Looney, C.: Fuzzy Petri Nets for rule-based decision making. IEEE Trans. Syst. Man Cybern. 22, 178–183 (1988)CrossRefGoogle Scholar
- 185.Maimon, O., Rokach, L.: Introduction to knowledge discovery and data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 1–15. Springer, New York (2010)zbMATHGoogle Scholar
- 186.Marinov, P., Fidanova, S.: Intercriteria and correlation analyses: similarities, differences and simultaneous use. Ann. “Inf.” Sect. Union Sci. Bulg. 8, 45–53 (2016)Google Scholar
- 187.Meng, F., Tang, J., Wang, P., Chen, X.: A programming-based algorithm for interval-valued intuitionistic fuzzy group decision making. Knowl.-Based Syst. 144, 122–143 (2018). https://doi.org/10.1016/j.knosys.2017.12.033CrossRefGoogle Scholar
- 188.Meyer-Nieberg, S., Beyer, H.-G.: Self-adaptation in evolutionary algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, vol. 02007, No. 54, pp. 47–75. Springer, BerlinGoogle Scholar
- 189.Mishra, A.R., Rani, P.: Biparametric information measures-based TODIM technique for interval-valued intuitionistic fuzzy environment. Arab. J. Sci. Eng. 43(6), 3291–3309 (2018). https://doi.org/10.1007/s13369-018-3069-6zbMATHCrossRefGoogle Scholar
- 190.Mishra, A.R., Rani, P.: Interval-Valued intuitionistic fuzzy WASPAS method: application in reservoir flood control management policy. Group Decis. Negot. 27(6), 1047–1078 (2018). https://doi.org/10.1007/s10726-018-9593-7CrossRefGoogle Scholar
- 191.Mondal, T.K., Samanta, S.: Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 119(3), 483–494 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 192.Moyle, S.: Collaborative data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 1029–1039. Springer, New York (2010)CrossRefGoogle Scholar
- 193.Mu, Z., Zeng, S., Liu, Some, Q.: interval-valued intuitionistic fuzzy zhenyuan aggregation operators and their application to multi-attribute decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 26(4), 633–653 (2018). https://doi.org/10.1142/S0218488518500290MathSciNetCrossRefGoogle Scholar
- 194.Nayagam, L.G., Sivaraman, G.: Ranking of interval-valued intuitionistic fuzzy sets. Appl. Soft Comput. J. 11(4), 3368–3372 (2011)CrossRefGoogle Scholar
- 195.Nayagam, L.G., Muralikrishnan, S., Sivaraman, G.: Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Syst. Appl. 38(3), 1464–1467 (2011)CrossRefGoogle Scholar
- 196.Nayagam, V., Jeevaraj, S., Dhanasekaran, P.: An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Comput. 21(23), 7077–7082 (2017). https://doi.org/10.1007/s00500-016-2249-0CrossRefzbMATHGoogle Scholar
- 197.Nguyen, H.: A new generalized knowledge measure in multi-attribute group decision making under interval-valued intuitionistic fuzzy environment. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp. 156–163 (2018). https://doi.org/10.1145/3184066.3184067. ISBN: 978-1-4503-6336-5
- 198.Orriols-Puig, A., Bernado-Mansilla, E.: Mining imbalanced data with learning classifier systems. In: Bull, L., Ester, B.-M., Holmes, J. (eds.) Learning Classifier Systems in Data Mining, pp. 123–145. Springer, Berlin (2008)Google Scholar
- 199.Oztaysi, B., Onar, S., Kahraman, C., Yavuz, M.: Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. Transp. Res. Part D: Transp. Environ. 53, 128–148 (2017). https://doi.org/10.1016/j.trd.2017.04.003CrossRefGoogle Scholar
- 200.Park, C.: \(([r, s], [t, u])\)-Interval-valued intuitionistic fuzzy alpha generalized continuous mappings. Korean J. Math. 25(2), 261–278 (2017)MathSciNetGoogle Scholar
- 201.Park, D., Kwun, Y.C., Park, J.H., et al.: Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Math. Comput. Model. 50(9–10), 1279–1293 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 202.Park, J.H., Park, I.Y., Kwun, Y.C., Tan, X.: Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 35(5), 2544–2556 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 203.Pechenizkiy, M., Puuronen, S., Tsymbal, A.: Does relevance matter to data mining research? In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 251–275. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
- 204.Pei, Z., Lu, J. S., Zheng, L.: Generalized interval valued intuitionistic fuzzy numbers with applications in workstation assessment. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 32(10), 2198–2206 (2012)Google Scholar
- 205.Pekala, B., Balicki, K.: Interval-valued intuitionistic fuzzy sets and similarity measure. Iran. J. Fuzzy Syst. Article 6, 14(4), 87–98 (2017). https://doi.org/10.22111/IJFS.2017.3327
- 206.Pena-Ayala, A. (ed.): Educational Data Mining. Springer, Cham (2014)Google Scholar
- 207.Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model, novel developments in uncertainty representation and processing, Part V. Advances in Intelligent Systems and Computing, pp. 385–397. Springer (2016)Google Scholar
- 208.Pencheva, T., Angelova, M.: InterCriteria analysis of simple genetic algorithms performance, chapter. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, vol. 681, pp. 147–159. Springer (2017)Google Scholar
- 209.Pencheva, T., Roeva, O., Angelova, M.: Investigation of genetic algorithm performance based on different algorithms for intercriteria relations calculation, chapter. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing, Vol. 10665 of Lecture Notes in Computer Science, pp. 390–398 (2018)CrossRefGoogle Scholar
- 210.Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: Intercriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuit. Fuzzy Sets 21(2), 99–110 (2015)zbMATHGoogle Scholar
- 211.Qi, F.: Research on the comprehensive evaluation of sports management system with interval valued intuitionistic fuzzy information. Int. J. Adv. Comput. Technol. 4(6), 288–294 (2012)Google Scholar
- 212.Qi, X.-W., Liang, C.-Y., Zhang, E.-Q., Ding, Y.: Approach to interval-valued intuitionistic fuzzy multiple attributes group decision making based on maximum entropy. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 31(10), 1940–1948 (2011)Google Scholar
- 213.Qi, X.-W., Liang, C.-Y., Cao, Q.-W., Ding, Y.: Automatic convergent approach in interval-valued intuitionistic fuzzy multi-attribute group decision making. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 33(1), 110–115 (2011)zbMATHGoogle Scholar
- 214.Qin, Y., Liu, Y., Liu, J.: A novel method for interval-value intuitionistic fuzzy multicriteria decision-making problems with immediate probabilities based on OWA distance operators. Math Probl. Eng. 2018, Art. no. 1359610 (2018). https://doi.org/10.1155/2018/1359610Google Scholar
- 215.Rajesh, K., Srinivasan, R.: Application of interval-valued intuitionistic fuzzy sets of second type in pattern recognition. Notes Intuit. Fuzzy Sets 24(1), 80–86 (2018)CrossRefGoogle Scholar
- 216.Rani, P., Jain, D., Hooda, D.S.: Shapley function based interval-valued intuitionistic fuzzy VIKOR technique for correlative multi-criteria decision making problems. Iran. J. Fuzzy Syst. 15(1), 25–54 (2018). https://doi.org/10.22111/ijfs.2018.3577
- 217.Reiser, R., Bedregal, B., Bustince, H., Fernandez, J.: Generation of interval valued intuitionistic fuzzy implications from K operators, fuzzy implications and fuzzy coimplications. Commun. Comput. Inf. Sci. CCIS (PART 2) 298, 450–460 (2012)Google Scholar
- 218.Ren, H., Chen, H., Fei, W., Li, D.: A MAGDM method considering the amount and reliability information of interval-valued intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 19(3), 715–725 (2017). https://doi.org/10.1007/s40815-016-0179-8CrossRefGoogle Scholar
- 219.Ribagin, S., Zaharieva, B., Radeva, I., Pencheva, T.: Generalized net model of proximal humeral fractures diagnosing. Int. J. Bioautomation 22(1), 11–20 (2018). https://doi.org/10.7546/ijba.2018.22.1.11-20CrossRefGoogle Scholar
- 220.Robinson, J.: Contrasting correlation coefficient with distance measure in interval valued intuitionistic trapezoidal fuzzy MAGDM Problems (Chapter 60). Fuzzy Syst. Concepts Methodol. Tools Appl. 1448–1479 (2017). https://doi.org/10.4018/978-1-5225-1908-9.ch060
- 221.Roeva O., Pencheva, T., Angelova, M., Vassilev, P.: Intercriteria analysis by pairs and triples of genetic algorithms application for models identification, chapter. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization, Vol. 655 of Studies in Computational Intelligence, pp. 193–218 (2016)Google Scholar
- 222.Roeva O., Vassilev, P., Angelova, M., Pencheva, T.: Intercriteria analysis of parameters relations in fermentation processes models, chapter. In: Nunes, M., Nguyen, N., Camacho, D., Trawinski, B. (eds.) Computational Collective Intelligence, vol. 9330 of Lecture Notes in Artificial Intelligence, pp. 171–181 (2015)CrossRefGoogle Scholar
- 223.Roeva O., Zoteva, D.: Knowledge discovery from data: InterCriteria Analysis of mutation rate influence. Notes Intuit. Fuzzy Sets 24(1), 120–130 (2018)CrossRefGoogle Scholar
- 224.Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Studies in Computational Intelligence, pp. 107–126. Springer (2016)Google Scholar
- 225.Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 5, pp. 501–506 (2015)Google Scholar
- 226.Roeva, O., Pencheva, T., Angelova, M., Vassilev, P.: InterCriteria analysis by pairs and triples of genetic algorithms application for models identification. Recent Advances in Computational Optimization, Studies in Computational Intelligence, pp. 193–218. Springer (2016)Google Scholar
- 227.Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for interCriteria relations calculation. In: IEEE 8th International Conference on Intelligent Systems, Sofia, Bulgaria, 4–6 Sept 2016, pp. 567–572 (2016)Google Scholar
- 228.Roeva, O., Vassilev, P., Ikonomov, N., Angelova, M., Su, J., Pencheva, T.: On different algorithms for interCriteria relations calculation, chapter. In: Hadjiski, M., Atanassov, K.T. (eds.) Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, Vol. 757 of Studies in Computational Intelligence, pp. 143–160 (2019)Google Scholar
- 229.Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. In: Atanassov, K.T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tre, G., Zadrożny, S. (eds.) Novel Developments in Uncertainty Representation and Processing, Part V, Advances in Intelligent Systems and Computing, vol. 401, pp. 301–313 (2016)Google Scholar
- 230.Roeva, O., Fidanova, S.: InterCriteria analysis of relations between model parameters estimates and ACO performance. Adv. Comput. Ind. Math. Stud. Comput. Intell. 681, 175–186 (2017)Google Scholar
- 231.Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)Google Scholar
- 232.Roeva, O., Vassilev, P., Fidanova, S., Paprzycki, M.: InterCriteria analysis of genetic algorithms performance. Stud. Comput. Intell. 655, 235–260 (2016)MathSciNetGoogle Scholar
- 233.Roeva, O., Vassilev, P., Chountas, P.: Application of topological operators over data from InterCriteria analysis, FQAS 2017. LNAI 10333(215–225), 19 (2017). https://doi.org/10.1007/978-3-319-59692-1CrossRefGoogle Scholar
- 234.Roeva, O., Fidanova, S., Paprzycki, M.: Comparison of different ACO start strategies based on InterCriteria analysis. Stud. Comput. Intell. Book Ser. 717, 53–72 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 235.Roeva, O., Fidanova, S., Luque, G., Paprzycki, M.: Intercriteria analysis of ACO performance for workforce planning problem. Recent Adv. Comput. Optim. 795, 47–67 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 236.Rokach, L.: A survey of clustering algorithms, In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 269–298. Springer, New York (2010)CrossRefGoogle Scholar
- 237.Rud, O.P.: Data Mining Cookbook. Wiley, Danvers (2001)Google Scholar
- 238.Seifert, J.: Data Mining: An Overview, CRS Report for Congress, Order Code RL31798, Dec 2004Google Scholar
- 239.Shannon, A., Atanassov, K.: A first step to a theory of the intuitionistic fuzzy graphs. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, 28–30 Sept 1994, pp. 59–61 (1994)Google Scholar
- 240.Shen, L., Li, G., Liu, W.: Method of multi-attribute decision making for interval-valued intuitionistic fuzzy sets based on mentality function. Appl. Mech. Mater. 44–47, 1075–1079 (2011)Google Scholar
- 241.Shmueli, G., Patel, N., Bruce, P.: Data Mining for Business Intelligence. Wiley, Hoboken (2007)Google Scholar
- 242.Simovici, D., Djeraba, C.: Mathematical Tools for Data Mining, 2nd edn. Springer, London (2014)zbMATHCrossRefGoogle Scholar
- 243.Singh, S., Garg, H.: Symmetric triangular interval type-2 intuitionistic fuzzy sets with their applications in multi criteria decision making. Symmetry 10(9), art. no. 401 (2018). https://doi.org/10.3390/sym10090401CrossRefGoogle Scholar
- 244.Sotirov S., Vardeva, I., Krawczak, M.: Iintuitionistic fuzzy multilayer perceptron as a part of integrated systems for early forest-fire detection. Intuitionistic Fuzzy Sets, Sofia, vol. 19, N: 3, pp. 81–89 (2013)Google Scholar
- 245.Sotirov, S., Atanassov, K.: Generalized nets in artificial intelligence. vol. 6: Generalized nets and Supervised Neural Networks. “Prof. M. Drinov” Academic Publishing House, Sofia (2012)Google Scholar
- 246.Sotirov, S., Atanassov, K.: Intuitionistic fuzzy feed forward neural network. Cybern. Inf. Technol. 9(2), 62–68 (2009)Google Scholar
- 247.Sotirov, S., Atanassova, V., Sotirova, E., Bureva, V., Mavrov, D.: Application of the intuitionistic fuzzy InterCriteria analysis method to a neural network preprocessing procedure. In: 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30.06-03.07.2015, Gijon, Spain, pp. 1559–1564 (2015). https://doi.org/10.2991/ifsa-eusflat-15.2015.222
- 248.Sotirov, S., Atanassova, V., Sotirova, E., Doukovska, L., Bureva, V., Mavrov, D., Tomov, J.: Application of the intuitionistic fuzzy InterCriteria analysis method with triples to a neural network preprocessing procedure. Computational Intelligence and Neuroscience, Hindawi, vol. 2017, Article ID 2157852 (2017)Google Scholar
- 249.Sotirov, S., Kodogiannis, V., Blessing, R.E.: Intuitionistic fuzzy estimations for connections with Low Rate Wireless personal area networks. In: First International Workshop on on Intuitionistic Fuzzy Sets, Generalized Nets, and Knowledge Engineering, London, 6-7 Sept 2006, pp. 81–87 (2006)Google Scholar
- 250.Sotirov, S., Method for determining of intuitionistic fuzzy sets in discovering water floods by neural networks. Issue on Intuitionistic Fuzzy Sets and Generalized Nets, Warszawa, vol. 4, pp. 9–14 (2007)Google Scholar
- 251.Sotirov, S., Sotirova, E., Atanassova, V., Atanassov, K., Castillo, O., Melin, P., Petkov, T., Surchev, S.: A hybrid approach for modular neural network design using intercriteria analysis and intuitionistic fuzzy logic. Complexity 2018, Article ID 3927951, 11 pages. https://doi.org/10.1155/2018/3927951CrossRefGoogle Scholar
- 252.Sotirov, S., Sotirova, E., Melin, P., Castillo, O., Atanassov, K.: Modular neural network preprocessing procedure with intuitionistic fuzzy intercriteria analysis method. In: Andreasen, T. at al. (eds.) Flexible Query Answering Systems 2015, pp. 175–186. Springer, Cham (2016)Google Scholar
- 253.Sotirov, S.: Determining of intuitionistic fuzzy sets in estimating probability of spam in the e-mail by the help of the neural network. Issue on Intuitionistic Fuzzy Sets and Generalized Nets, Warszawa, vol. 4, pp. 43–47 (2007)Google Scholar
- 254.Sotirov, S.: Opportunities for application of the intercriteria analysis method to neural network preprocessing procedures. Notes Intuit. Fuzzy Sets 21(4), 143–152 (2015)Google Scholar
- 255.Sotirov, S.: Intuitionistic fuzzy estimations for connections of the transmit routines of the bluetooth interface. Adv. Stud. Contemp. Math. 15(1), 99–108 (2007)zbMATHGoogle Scholar
- 256.Sotirov, S., Dimitrov, A.: Neural network for defining intuitionistic fuzzy estimation in petroleum recognition. Issue Intuit. Fuzzy Sets Gen. Nets 8, 74–78 (2010)Google Scholar
- 257.Sotirova, E., Bureva, V., Chountas, P., Krawczak, M.: An application of intercriteria decision making method to the rankings of universities in the United Kingdom. Notes Intuit. Fuzzy Sets 22(3), 112–119 (2016)Google Scholar
- 258.Sotirova, E., Bureva, V., Sotirov, S.: A generalized net model for evaluation process using intercriteria analysis method in the university. Imprecision and Uncertainty in Information Representation and Processing, Studies in Fuzziness and Soft Computing, pp. 389–399. Springer (2015)Google Scholar
- 259.Sotirova, E., Shannon, A.: Application of InterCriteria decision making to the rankings of Australian universities. Notes Intuit. Fuzzy Sets 21(4), 136–142 (2015). ISSN 1310-4926Google Scholar
- 260.Spurgin, A., Petkov, G.: Advances simulator data mining for operators’ performance assessment, In: Ruan, D., Chen, G., Kerre, E., Wets, G. (eds.) Intelligent Data Mining: Techniques and Applications, pp. 487–514. Springer, Berlin (2005)CrossRefGoogle Scholar
- 261.Stanujkić, D., Meidutė-Kavaliauskienė, I.: An approach to the production plant location selection based on the use of the Atanassov interval-valued intuitionistic fuzzy sets. Transport 33(3), 835–842 (2018)CrossRefGoogle Scholar
- 262.Stratiev, D., Nedelchev, A., Shishkova, I., Ivanov, A., Sharafutdinov, I., Nikolova, R., Mitkova, M., Yordanov, D., Rudnev, N., Belchev, Z., Atanassova, V., Atanassov, K.: Dependence of visbroken residue viscosity and vacuum residue conversion in a commercial visbreaker unit on feedstock quality. Fuel Process. Technol. 138, 595–604 (2015)CrossRefGoogle Scholar
- 263.Stratiev, D., Sotirov, S., Shishkova, I., Nedelchev, A., Sharafutdinov, I., Vely, A., Mitkova, M., Yordanov, D., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D.D., Rudnev, N., Ribagin, S.: Investigation of relationships between bulk properties and fraction properties of crude oils by application of the intercriteria analysis. Pet. Sci. Technol. 34(13), 1113–1120 (2015)CrossRefGoogle Scholar
- 264.Sumathi, S., Sivanandam, S.: Introduction to Data Mining and Applications, Berlin (2006)Google Scholar
- 265.Tan, C.: A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Syst. Appl. 38(4), 3023–3033 (2011)CrossRefGoogle Scholar
- 266.Tang, J., Meng, F., Zhang, Y.: Decision making with interval-valued intuitionistic fuzzy preference relations based on additive consistency analysis. Inf. Sci. 467, 115–134 (2018). https://doi.org/10.1016/j.ins.2018.07.036MathSciNetCrossRefGoogle Scholar
- 267.Tao, Z., Liu, X., Chen, H., Zhou, L.: Ranking interval-valued fuzzy numbers with intuitionistic fuzzy possibility degree and its application to fuzzy multi-attribute decision making. Int. J. Fuzzy Syst. 19(3), 646–658 (2017)CrossRefGoogle Scholar
- 268.Tian, H., Li, J., Zhang, F., Xu, Y., Cui, C., Deng, Y., Xiao, S.: Entropy analysis on intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets and its applications in mode assessment on open communities. J. Adv. Comput. Intell. Intell. Inform. 22(1), 147–155 (2018). https://doi.org/10.20965/jaciii.2018.p0147CrossRefGoogle Scholar
- 269.Tiwari, P., Gupta, P.: Entropy, distance and similarity measures under interval valued intuitionistic fuzzy environment. Informatica 42(4), 617–627 (2018). https://doi.org/10.31449/inf.v42i4.1303CrossRefGoogle Scholar
- 270.Todorova, L., Vassilev, P., Surchev, J.: Using Phi coefficient to interpret results obtained by InterCriteria analysis. In: Novel Developments in Uncertainty Representation and Processing, Vol. 401, Advances in Intelligent Systems and Computing, pp. 231–239. Springer (2106). https://doi.org/10.1007/978-3-319-26211-6_20Google Scholar
- 271.Tooranloo, H.S., Ayatollah, A.S., Karami, M.: Analysis of causal relationship between factors affecting the successful implementation of enterprise resource planning using intuitionistic fuzzy: DEMATEL. Int. J. Bus. Inf. Syst. 29(4), 436–458 (2018). https://doi.org/10.1504/IJBIS.2018.096032CrossRefGoogle Scholar
- 272.Traneva, V., Tranev, S., Szmidt, E., Atanassov, K.: Three dimensional interCriteria analysis over intuitionistic fuzzy data. In: Advances in Fuzzy Logic and Technology’ 2017, vol. 3, 1, pp. 442–449. Springer, Cham (2018)Google Scholar
- 273.Traneva, V., Tranev, S.: Intuitionistic fuzzy InterCriteria approach to the assessment in a fast food restaurant. In: Advances in Intelligent Systems and Computing, Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making—Proceedings of the INFUS Conference, 23–25 July 2019, Istanbul, Turkey, vol. 1003 (2019). ISBN 978-3-030-23755-4. https://doi.org/10.1007/978-3-030-23756-1Google Scholar
- 274.Tu, C.C., Chen, L.H.: Novel score functions for interval valued intuitionistic fuzzy values. In: Proceedings of the SICE Annual Conference, art. no. 6318743, pp. 1787–1790 (2012)Google Scholar
- 275.Valchev D., Sotirov, S.: Intuitionistic fuzzy detection Of signal availability In multipath wireles chanels, 14-th International Conference on Intuitionistic Fuzzy Sets, Sofia, pp. 24–29 (2009)Google Scholar
- 276.Vankova, D., Sotirova, E., Bureva, V.: An application of the InterCriteria method approach to health-related quality of life. Notes Intuit. Fuzzy Sets 21(5), 40–48 (2015)Google Scholar
- 277.Vardeva I., Sotirov, S.: Intuitionistic fuzzy estimation of damaged packets with multilayer perceptron. In: Proceedings of the Tenth International Workshop on Generalized Nets, IWGN’2009, Sofia, pp. 63–69 (2009)Google Scholar
- 278.Vassilev, P., Todorova, L., Andonov, V.: An auxiliary technique for InterCriteria analysis via a three dimensional index matrix. Notes Intuit. Fuzzy Sets 21(2), 71–76 (2015)Google Scholar
- 279.Wan, S., Wang, F., Dong, J.: A three-phase method for group decision making with interval-valued intuitionistic fuzzy preference relations. IEEE Trans. Fuzzy Syst. 26(2), 998–1010 (2018). https://doi.org/10.1109/TFUZZ.2017.2701324CrossRefGoogle Scholar
- 280.Wan, S.-P.: Multi-attribute decision making method based on interval-valued intuitionistic trapezoidal fuzzy number. Kongzhi yu Juece/Control Decis. 26(6), 857-860+866 (2011)Google Scholar
- 281.Wang, Z., Li, K.W., Xu, J.: A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information. Expert Syst. Appl. 38(10), 12462–12469MathSciNetCrossRefGoogle Scholar
- 282.Wang, Z.J., Li, K.W.: An interval valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives. Expert Syst. Appl. 39(18), 13509–13516 (2012)CrossRefGoogle Scholar
- 283.Wang, J.-Q., Li, K.-J.; Zhang, H.-Y.U.: Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function. Knowl.-Based Syst. 27, 119–125 (2012)CrossRefGoogle Scholar
- 284.Wang, W., Liu, X., Qin, Y.: Interval valued intuitionistic fuzzy aggregation operators. J. Syst. Eng. Electron. 23(4), 574–580 (2012)CrossRefGoogle Scholar
- 285.Wang, Q., Sun, H. Interval-Valued intuitionistic fuzzy einstein geometric choquet integral operator and its application to multiattribute group decision-making. Math. Probl. Eng. 2018, Art. no. 9364987 (2018). https://doi.org/10.1155/2018/9364987MathSciNetGoogle Scholar
- 286.Wang, J.Q., Li, K.J., Zhang, H.Y.: Interval valued intuitionistic fuzzy multi criteria decision making approach based on prospect score function. Knowl. Based Syst. 27, 119–125 (2012)CrossRefGoogle Scholar
- 287.Wang, P., Xu, X., Wang, J., Cai, C.: Some new operation rules and a new ranking method for interval-valued intuitionistic linguistic numbers. J. Intell. Fuzzy Syst. 32(1), 1069–1078 (2017). https://doi.org/10.3233/JIFS-16644CrossRefzbMATHGoogle Scholar
- 288.Wang, P., Xu, X., Wang, J., Cai, C.: Interval-valued intuitionistic linguistic multi-criteria group decision-making method based on the interval 2-tuple linguistic information. J. Intell. Fuzzy Syst. 33(2), 985–994 (2017). https://doi.org/10.3233/JIFS-162291CrossRefzbMATHGoogle Scholar
- 289.Wei, G.-W., Wang, H.-J., Lin, R.: Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision-making with incomplete weight information. Knowl. Inf. Syst. 26(2), 337–349CrossRefGoogle Scholar
- 290.Wei, C.-P., Wang, P., Zhang, Y.-Z.: Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Inf. Sci. 181(19), 4273–4286MathSciNetzbMATHCrossRefGoogle Scholar
- 291.Wei, G., Zhao, X.: An approach to multiple attribute decision making with combined weight information in interval-valued intuitionistic fuzzy environment. Control Cybern. 41(1), 97–112 (2012)Google Scholar
- 292.Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2005)Google Scholar
- 293.Wu, J., Chiclana, F.: Non dominance and attitudinal prioritisation methods for intuitionistic and interval valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39(18), 13409–13416 (2012)CrossRefGoogle Scholar
- 294.Wu, L., Wei, G., Gao, H., Wei, Y.: Some interval-valued intuitionistic fuzzy Dombi Hamy mean operators and their application for evaluating the elderly tourism service quality in tourism destination. Mathematics 6(12), Art. no. 294 (2018). https://doi.org/10.3390/math6120294CrossRefGoogle Scholar
- 295.Wu, Y., Yu, D.: Evaluation of sustainable development for research oriented universities based on interval valued intuitionistic fuzzy set. Dongnan Daxue Xuebao (Ziran Kexue Ban)/J. Southeast Univ. (Natural Science Edition), 42(4), 790–796 (2012)Google Scholar
- 296.Xian, S., Dong, Y., Liu, Y., Jing, N.: A novel approach for linguistic group decision making based on generalized interval-valued intuitionistic fuzzy linguistic induced hybrid operator and TOPSIS. Int. J. Intell. Syst. 33(2), 288–314 (2018). https://doi.org/10.1002/int.21931CrossRefGoogle Scholar
- 297.Xu, K., Zhou, J., Gu, R., Qin, H.: Approach for aggregating interval-valued intuitionistic fuzzy information and its application to reservoir operation. Expert Syst. Appl. 38(7), 9032–9035CrossRefGoogle Scholar
- 298.Xu, G.-L.: A consensus reaching model with minimum adjustments in interval-valued intuitionistic MAGDM. Math. Probl. Eng. 2018, art. no. 9070813 (2018). https://doi.org/10.1155/2018/9070813MathSciNetGoogle Scholar
- 299.Xu, Z.: Methods for aggregation interval-valued intuitionistic fuzzy information and their Application to decision making. Control Decis. 22(2), 215–219 (2007)Google Scholar
- 300.Xu, Z.: A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Inf. Sci. 180(1), 181–190 (2010)zbMATHCrossRefGoogle Scholar
- 301.Xu, Z., Cai, X.: Incomplete interval-valued intuitionistic fuzzy preference relations. Int. J. Gen. Syst. 38(8), 871–886 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 302.Xu, G., Duan, X., Lü, H.: Target priority determination methods by interval-valued intuitionistic fuzzy sets with unknown attribute weights. J. Shanghai Jiaotong Univ. (Science) 22(5), 624–632 (2017). https://doi.org/10.1007/s12204-017-1880-yCrossRefGoogle Scholar
- 303.Yang, Y., Liang, C., Ji, S.: Comments on “Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets” by Ridvan Sahin. Soft Comput. 21(11), 3033–3035 (2017). https://doi.org/10.1007/s00500-015-1988-7CrossRefzbMATHGoogle Scholar
- 304.Yao, Y., Zhong, N., Zhao, Y.: A conceptual framework of data mining, In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 501–515. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
- 305.Ye, D., Liang, D., Hu, P.: Three-way decisions with interval-valued intuitionistic fuzzy decision-theoretic rough sets in group decision-making. Symmetry 10(7), art. no. 281 (2018). https://doi.org/10.3390/sym10070281CrossRefGoogle Scholar
- 306.Ye, J.: Generalized Dice measures for multiple attribute decision making under intuitionistic and interval-valued intuitionistic fuzzy environments. Neural Comput. Appl. 30(12), 3623–3632 (2018). https://doi.org/10.1007/s00521-017-2947-2CrossRefGoogle Scholar
- 307.Ye, J.: Multicriteria decision making method using the Dice similarity measure based on the reduct intuitionistic fuzzy sets of interval valued intuitionistic fuzzy sets. Appl. Math. Model. 36(9), 4466–4472 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 308.Ye, J.: Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Syst. Appl. 36(3), 6899–6902 (2009)CrossRefGoogle Scholar
- 309.Ye, F.: An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst. Appl. 37(10), 7050–7055 (2010)CrossRefGoogle Scholar
- 310.Ye, J.: Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Modell. 34(12), 3864–3870 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 311.Yin, S., Yang, Z., Chen, S.: Interval-valued intuitionistic fuzzy multiple attribute decision making based on the improved fuzzy entropy. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 40(5), 1079–1084 (2018). https://doi.org/10.3969/j.issn.1001-506X.2018.05.18
- 312.Yu, G., Li, D., Qiu, J.: Interval-Valued intuitionistic fuzzy multi-attribute decision making based on satisfactory degree. Theoretical and Practical Advancements for Fuzzy System Integration, vol. 49, p. 23 (2017). https://doi.org/10.4018/978-1-5225-1848-8.ch003
- 313.Yu, D., Wu, Y.: Interval-valued intuitionistic fuzzy Heronian mean operators and their application in multi-criteria decision making. Afr. J. Bus. Manag. 6(11), 4158–4168 (2012)Google Scholar
- 314.Yu, D., Wu, Y., Lu, T.: Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl.-Based Syst. 30, 57–66 (2012)CrossRefGoogle Scholar
- 315.Yu, G., Li, D., Qiu, J., Ye, Y.: Application of satisfactory degree to interval-valued intuitionistic fuzzy multi-attribute decision making. J. Intell. Fuzzy Syst. 32(1), 1019–1028 (2017). https://doi.org/10.3233/JIFS-16557CrossRefzbMATHGoogle Scholar
- 316.Yu, L., Wang, L., Bao, Y.: Technical attributes ratings in fuzzy QFD by integrating interval-valued intuitionistic fuzzy sets and Choquet integral. Soft Comput. 22(6), 2015–2024 (2018). https://doi.org/10.1007/s00500-016-2464-8CrossRefzbMATHGoogle Scholar
- 317.Yue, Z.: Deriving decision maker’s weights based on distance measure for interval-valued intuitionistic fuzzy group decision making. Expert Syst. Appl. 38(9), 11665–11670CrossRefGoogle Scholar
- 318.Yue, Z. An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making. Expert Syst. Appl. 38 (5), 6333–6338CrossRefGoogle Scholar
- 319.Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
- 320.Zaharieva, B., Doukovska, L., Ribagin, S., Mihalicova, A., Radeva, I.: Intercriteria analysis of Behterev’s Kinesitherapy program. Notes on Intuit. Fuzzy Sets 23(3), 69–80 (2017)Google Scholar
- 321.Zaharieva, B., Doukovska, L., Ribagin, S., Radeva, I.: InterCriteria approach to Behterev’s disease analysis. Notes Intuit. Fuzzy Sets 23(2), 119–127 (2017)Google Scholar
- 322.Zeng, W., Zhao, Y.: Approximate, reasoning of interval valued fuzzy sets based on interval valued similarity measure set: ICIC Express Letters. Part B: Appl. 3(4), 725–732 (2012)Google Scholar
- 323.Zhang, Y.J., Ma, P.J., Su, X.H., Zhang, C.P.: Entropy on interval-valued intuitionistic fuzzy sets and its application in multi-attribute decision making. In: Fusion 2011–14th International Conference on Information Fusion, art. no. 5977465Google Scholar
- 324.Zhang, Y.J., Ma, P.J., Su, X.H., Zhang, C.P.: Multi attribute decision making with uncertain attribute weight information in the framework of interval valued intuitionistic fuzzy set. Zidonghua Xuebao/Acta Automatica Sinica 38(2), 220–228 (2012)MathSciNetzbMATHGoogle Scholar
- 325.Zhang, J.L., Qi, X.W.: Induced interval valued intuitionistic fuzzy hybrid aggregation operators with TOPSIS order inducing variables. J. Appl. Math. 2012, Art. no. 245732 (2012)Google Scholar
- 326.Zhang, Q., Yao, H., Zhang, Z.: Some similarity measures of interval-valued intuitionistic fuzzy sets and application to pattern recognition. Appl. Mech. Mater. 44–47, 3888–3892CrossRefGoogle Scholar
- 327.Zhang, Q.-sh., Jiang, S., Jia, B. et al.: Some information measures for interval-valued intuitionistic fuzzy sets. Inf. Sci. 180(24), 5130–5145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 328.Zhang, Z.: Approaches to group decision making based on interval-valued intuitionistic multiplicative preference relations. Neural Comput. Appl. 28(8), 2105–2145 (2017). https://doi.org/10.1007/s00521-016-2183-1CrossRefGoogle Scholar
- 329.Zhang, Q., Jiang, S.: Relationships between entropy and similarity measure of interval-valued intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(11), 1121–1140 (2010)zbMATHGoogle Scholar
- 330.Zhang, H., Yu, L.: MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets. Knowl.-Based Syst. 30, 115–120 (2012)CrossRefGoogle Scholar
- 331.Zhang, Z., Hu, Y., Ma, C., Xu, J., Yuan, S., Chen, Z.: Incentive-punitive risk function with interval valued intuitionistic fuzzy information for outsourced software project risk assessment. J. Intell. Fuzzy Syst. 32(5), 3749–3760 (2017). https://doi.org/10.3233/JIFS-169307CrossRefzbMATHGoogle Scholar
- 332.Zhao, H., Ni, M., Liu, H. A class of new interval valued intuitionistic fuzzy distance measures and their applications in discriminant analysis. Appl. Mech. Mater. 182–183, 1743–1745 (2012)CrossRefGoogle Scholar
- 333.Zoteva D., Roeva, O., Delkov, A., Tsakov, H.: Intercriteria analysis of forest fire risk. In: Proceedings of the 4th International Conference on Numerical and Symbolic Computation—Developments and Applications (SYMCOMP 2019), pp. 215–229 (2019)Google Scholar
- 334.Zoteva, D., Krawczak, M.: Generalized Nets as a Tool for the Modelling of Data Mining Processes. A Survey. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, vol. 13, pp. 1–60 (2017)Google Scholar
- 335.Zoteva, D., Roeva, O.: InterCriteria analysis results based on different number of objects. Notes Intuit. Fuzzy Sets 24(1), 110–119 (2018)CrossRefGoogle Scholar
- 336.Zou, P., Liu, Y.: Model for evaluating the security of wireless sensor network in interval valued intuitionistic fuzzy environment. Int. J. Adv. Comput. Technol. 4(4), 254–260 (2012)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2020