Advertisement

Applications of IVIFSs

  • Krassimir T. AtanassovEmail author
Chapter
  • 133 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 388)

Abstract

Some applications of the IVIFSs will be discussed. In the period 1989–2000, as fas as the author knows, there were only 7 publications related to IVIFSs of other authors–Bustince and Burillo [61, 62, 63, 64, 65, 66] and Hong [139]. In the new centure, more than 200 papers over IVIFSs were published. The biggest part of them are related to some IVIFS-applications.

References

  1. 1.
    Abdullah, L., Ismail, W.K.W.: Hamming distance in intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets: a comparative analysis. Adv. Comput. Math. Appl. 1(1), 7–11 (2012)Google Scholar
  2. 2.
    Abdullah, S., Ayub, S., Hussain, I., Bedregal, B., Khan, M.: Analyses of S-boxes based on interval valued intuitionistic fuzzy sets and image encryption. Int. J. Comput. Intell. Syst. 10, 851–865 (2017).  https://doi.org/10.2991/ijcis.2017.10.1.57CrossRefGoogle Scholar
  3. 3.
    Adak, A.K., Bhowmik, M.: Interval cut-set of interval-valued intuitionistic fuzzy sets. Afr. J. Math. Comput. Sci. Res. 4(4), 192–200 (2011)Google Scholar
  4. 4.
    Ahn, J.Y., Han, K.S., Oh, S.Y., Lee, C.D., An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache. Int. J. Innov. Comput. Inf. Control 7(5 B), 2755–2762 (2011)Google Scholar
  5. 5.
    Aikhuele, D.O., Turan, F.B.M.: An integrated fuzzy dephi and interval-valued intuitionistic fuzzy M-Topsis model for design concept selection. Pak. J. Stat. Oper. Res. 13(2), 425–438 (2017).  https://doi.org/10.18187/pjsor.v13i2.1413CrossRefGoogle Scholar
  6. 6.
    Aikhuele, D.O., Turan, F.M., Odofin, S.M., Ansah, R.H.: Interval-valued Intuitionistic Fuzzy TOPSIS-based model for troubleshooting marine diesel engine auxiliary system. Trans. R. Instit. Nav. Arch. Part A: Int. J. Marit. Eng. 159, 107–114 (2017).  https://doi.org/10.3940/rina.ijme.2016.al.402CrossRefGoogle Scholar
  7. 7.
    Akram, M., Dudek, W.: Interval-valued intuitionistic fuzzy Lie ideals of Lie algebras. World Appl. Sci. J. 7(7), 812–819 (2009)Google Scholar
  8. 8.
    Alexieva, J., Choy, E., Koycheva, E.: Review and bibloigraphy on generalized nets theory and applications. In: Choy, E., Krawczak, M., Shannon, A., Szmidt, E. (eds.) A Survey of Generalized Nets. Raffles KvB Monograph No. 10, pp. 207–301 (2007)Google Scholar
  9. 9.
    An, X., Wang, Z., Li, H., Ding, J.: Project delivery system selection with interval-valued intuitionistic fuzzy set group decision-making method. Group Decis. Negot. 27(4), 689–707 (2018).  https://doi.org/10.1007/s10726-018-9581-yCrossRefGoogle Scholar
  10. 10.
    Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  11. 11.
    Angelova, M., Pencheva, T.: Intercriteria analysis approach for comparison of simple and multi-population genetic algorithms performance. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol. 795, pp. 117–130 (2019)Google Scholar
  12. 12.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from first type. Ann. “Inf.” Sect. Union Sci. Bulg. 8, 1–17 (2015/2016)Google Scholar
  13. 13.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 23(5), 29–41 (2017)Google Scholar
  14. 14.
    Angelova, N., Zoteva, D., Atanassov, K.: Interval valued intuitionistic fuzzy generalized nets. Part 2. In: Proceedings of the 12th International Conference “Information Systems and Grid Technologies” ISGT’2018 (in press)Google Scholar
  15. 15.
    Angelova, M., Pencheva, T.: Intercriteria analysis of multi-population genetic algorithms performance. Ann. Comput. Sci. Inf. Syst. 13, 77–82 (2017)zbMATHGoogle Scholar
  16. 16.
    Angelova, M., Roeva, O., Pencheva, T.: Intercriteria analysis of crossover and mutation rates relations in simple genetic algorithm. Ann. Comput. Sci. Inf. Syst. 5, 419–424 (2015)Google Scholar
  17. 17.
    Angelova, M., Roeva, O., Pencheva, T.: Intercriteria analysis of a cultivation process model based on the genetic algorithm population size influence. Notes Intuit. Fuzzy Sets 21(4), 90–103 (2015)Google Scholar
  18. 18.
    Angelova, N., Stoenchev, M., Todorov, V.: Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuit. Fuzzy Sets Gen. Nets 13, 143–170 (2017)zbMATHGoogle Scholar
  19. 19.
    Atanassov K., Nikolov, N.: Intuitionistic fuzzy generalized nets: definitions, properties, applications. In: Melo-Pinto, P., Teodorescu, H.-N., Fukuda, T. (eds.) Systematic Organization of Information in Fuzzy Systems. IOS Press, Amsterdam, pp. 161–175 (2003)Google Scholar
  20. 20.
    Atanassov K., Sotirova, E.: Generalized Nets Theory, “Prof. M. Drinov”. Academic Publishing House, Sofia (2017) (in Bulgarian)Google Scholar
  21. 21.
    Atanassov, K., Atanassova, V., Chountas, P., Mitkova, M., Sotirova, E., Sotirov, S., Stratiev, D.: Intercriteria analysis over normalized data. In: Proceedings of the 8th IEEE Conference Intelligent Systems, Sofia, pp. 136–138 (2016). Accessed 4–6 Sept 2016Google Scholar
  22. 22.
    Atanassov, K., Intercriteria Analysis over Patterns. In: Sgurev, V., Piuri, V., Jotsov, V. (eds.) Learning Systems: From Theory to Practice, Studies in Computational Intelligence, Vol. 7 Mathematics 2018, 6, 123, 61–71. Springer, Cham (2018)  https://doi.org/10.3390/math607012356
  23. 23.
    Atanassov, K., Sotirov, S., Kodogiannis, V.: Intuitionistic fuzzy estimations of the Wi-Fi connections. In: First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets, and Knowledge Engineering, London, pp. 75–80 (2006). Accessed 6–7 Sept 2006Google Scholar
  24. 24.
    Atanassov, K., Sotirov, S., Krawczak, M.: Generalized net model of the intuitionistic fuzzy feed forward neural network. Notes Intuit. Fuzzy Sets 15(2), 18–23 (2009)Google Scholar
  25. 25.
    Atanassov, K., Sotirova, E., Andonov, V.: Generalized net model of multicriteria decision making procedure using intercriteria analysis. In:- Advances in Fuzzy Logic and Technology, vol. 1, pp. 99–111. Springer, Cham (2017)Google Scholar
  26. 26.
    Atanassov, K., Zoteva, D., Angelova, N.: Interval valued intuitionistic fuzzy generalized nets. Part 1. Noten Intuit. Fuzzy Sets 24(3), 111–123 (2018)Google Scholar
  27. 27.
    Atanassov, K., E. Szmidt, J. Kacprzyk, V., Atanassova. An approach to a constructive simplification of multiagent multicriteria decision making problems via intercriteria analysis. Comptes Rendus de l’Academie Bulgare des Sciences 70(8), 1147–1156 (2017)Google Scholar
  28. 28.
    Atanassov, K.: Extended interval valued intuitionistic fuzzy index matrices. In: Atanassov, K.T., Kacprzyk, J. et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross fertilization, New Models and Applications. Springer, Cham (2019)Google Scholar
  29. 29.
    Atanassov, K.: Generalized nets as a tool for the modelling of data mining processes. In: Sgurev, V., Yager, R., Kacprzyk, J., Jotsov, V.: Innovative Issues in Intelligent Systems, pp. 161–215. Springer, Cham (2016)Google Scholar
  30. 30.
    Atanassov, K.: Generalized Nets in Artificial Intelligence. Vol. 1: Generalized Nets and Expert Systems, “Prof. M. Drinov”. Academic Publishing House, Sofia (1998)Google Scholar
  31. 31.
    Atanassov, K.: On Generalized Nets Theory, “Prof. M. Drinov” Academic Publishing House, Sofia (2007)Google Scholar
  32. 32.
    Atanassov, K.: The Generalized nets and the other graphical means for modelling. AMSE Rev. 2(1), 59–64 (1985)Google Scholar
  33. 33.
    Atanassov, K. Generalized index matrices. – Compt. Rend. de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)Google Scholar
  34. 34.
    Atanassov, K, Marinov, P., Atanassova, V.: Intercriteria analysis with interval valued intuitionistic fuzzy evaluations: symmetric case. In: 13th International Conference on Flexible Query Answering Systems, Amantea, Italy (submitted) (2019). Accessed 2–5 July 2019Google Scholar
  35. 35.
    Atanassov, K.: Generalized Nets. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
  36. 36.
    Atanassov, K.: Remark on intuitionistic fuzzy expert systems. BUSEFAL 59, 71–76 (1994)Google Scholar
  37. 37.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)zbMATHCrossRefGoogle Scholar
  38. 38.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  39. 39.
    Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer, Cham (2014)zbMATHGoogle Scholar
  40. 40.
    Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl.-Based Syst. 80, 122–130 (2015)CrossRefGoogle Scholar
  41. 41.
    Atanassov, K.: Interval valued intuitionistic fuzzy graphs. Notes Intuit. Fuzzy Sets 25(1), 21–31 (2019)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuit. Fuzzy Sets Gen. Nets 11, 1–8 (2014)Google Scholar
  43. 43.
    Atanassov, K., Atanassova, V., Gluhchev, G.: Intercriteria analysis: ideas and problems. Notes Intuit. Fuzzy Sets 21(1), 81–88 (2015)zbMATHGoogle Scholar
  44. 44.
    Atanassova V., Roeva, O.: Computational complexity and influence of numerical precision on the results of intercriteria analysis in the decision making process. Notes Intuit. Fuzzy Sets 24(3), 53–63 (2018)CrossRefGoogle Scholar
  45. 45.
    Atanassova, V., Doukovska, L., Michalikova, A., Radeva, I.: Intercriteria analysis: from pairs to triples. Notes Intuit. Fuzzy Sets 22, 5 (2016). ISSN:Print ISSN 1310-4926; Online ISSN 2367-8283, 98-110Google Scholar
  46. 46.
    Atanassova, V.: Interpretation in the Intuitionistic Fuzzy Triangle of the Results, Obtained by the InterCriteria Analysis, 16th World Congress of the International Fuzzy Systems Association (IFSA), 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30. 06-03. 07. 2015, Gijon, Spain, pp. 1369–1374 (2015).  https://doi.org/10.2991/ifsa-eusflat-15.2015.193
  47. 47.
    Atanassova, L.: On interval-valued intuitionistic fuzzy versions of L. Zadeh’s extension principle. Issues Intuit. Fuzzy Sets Gen. Nets 7, 13–19 (2008)Google Scholar
  48. 48.
    Atanassova, V., Doukovska, L., de Tre, G., Radeva, I.: Intercriteria analysis and comparison of innovation-driven and efficiency-to-innovation driven economies in the European Union. Notes Intuit. Fuzzy Sets 23(3), 54–68 (2017)Google Scholar
  49. 49.
    Atanassova, V., Doukovska, L., Kacprzyk, A., Sotirova, E., Radeva, I., Vassilev, P.: Intercriteria analysis of the global competitiveness reports: from efficiency- to innovation-driven economies. J. Mult.-Valued Logic Soft Comput. 31(5–6), 469–494 (2018)Google Scholar
  50. 50.
    Aygünoǵlu, A., Varol, B.P., Cetkin, V., Aygün, H.: Interval valued intuitionistic fuzzy subgroups based on interval valued double t norm. Neural Comput. Appl. 21(SUPPL. 1), 207–214 (2012)CrossRefGoogle Scholar
  51. 51.
    Berti-Equille, L.: Measuring and modelling data quality for quality-awareness in data mining. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 101–126. Springer, Berlin (2007)CrossRefGoogle Scholar
  52. 52.
    Bhowmik, M., Pal, M.: Some results on generalized interval valued intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 14 (2), 193–203 (2012)Google Scholar
  53. 53.
    Biswas, A., Kumar, S.: An integrated TOPSIS approach to MADM with interval-valued intuitionistic fuzzy settings. Adv. Intell. Syst. Comput. 706, 533–543 (2018).  https://doi.org/10.1007/978-981-10-8237-5_52Google Scholar
  54. 54.
    Bolturk, E., Kahraman, C. Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location selection problem. J. Intell. Fuzzy Syst. 35(4), 4865–4877 (2018).  https://doi.org/10.3233/JIFS-18979CrossRefGoogle Scholar
  55. 55.
    Bramer, M.: Principles of Data Mining. Springer, London (2013)zbMATHCrossRefGoogle Scholar
  56. 56.
    Bull, L., Ester, B.-M., Holmes, J.: Learning classifier systems in data mining: an introduction, In: Bull, L., Ester, B.-M., Holmes, J. (eds.) Learning Classifier Systems in Data Mining, pp. 1–15. Springer, Berlin (2008)zbMATHGoogle Scholar
  57. 57.
    Bureva, V., Michalìkovà, A., Sotirova, E., Popov, S., Riečan, B., Roeva, O.: Application of the InterCriteria Analysis to the universities rankings system in the Slovak Republic. Notes Intuit. Fuzzy Sets 23(2), 128–140 (2017)Google Scholar
  58. 58.
    Bureva, V., Sotirova, E., Atanassova, V., Angelova, N., Atanassov, K.: Intercriteria Analysis over Intuitionistic Fuzzy Data. Lecture Notes in Computer Science, vol. 10665, pp. 333–340. Springer, Berlin (2018).  https://doi.org/10.1007/978-3-319-73441-5_35CrossRefGoogle Scholar
  59. 59.
    Bureva, V., Sotirova, E., Panayotov, H.: The intercriteria decision making method to Bulgarian university ranking system. Ann. Inf. Sect., Union Sci. Bulg. 8, 54–70 (2015–2016)Google Scholar
  60. 60.
    Bureva, V., Sotirova, E., Sotirov, S., Mavrov, D.: Application of the intercriteria decision making method to Bulgarian universities ranking. Notes Intuit. Fuzzy Sets 21(2), 111–117 (2015)Google Scholar
  61. 61.
    Burillo P., Bustince H., Two operators on interval-valued intuitionistic fuzzy sets: Part II, Comptes rendus de l’Academie bulgare des Sciences, Tome 48, 1995, No. 1, 17-20Google Scholar
  62. 62.
    Burillo P., Bustince H., Two operators on interval-valued intuitionistic fuzzy sets: Part I, Comptes rendus de l’Academie bulgare des Sciences, Tome 47, 1994, No. 12, 9-12Google Scholar
  63. 63.
    Burillo, P., Bustince, H.: Informational energy on intuitionistic fuzzy sets and on interval-values intuitionistic fuzzy sets (\(\Phi \)-fuzzy). Relationship between the measures of information. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, pp. 46–49 (1994). Accessed 28–30 Sept. 1994Google Scholar
  64. 64.
    Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 78(3), 305–316 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Bustince, H.: Numerical information measurements in interval-valued intuitionistic fuzzy sets (IVIFS). In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, pp. 50–52. Accessed 28–30 Sept. 1994Google Scholar
  66. 66.
    Bustince, H., Burillo, P.: Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 74(2), 237–244 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Büyüközkan, G., Feyaioǧlu, O.: Accelerating the new product introduction with intelligent data mining, In: Ruan, D., Chen, G., Kerre, E., Wets, G. (eds.) Intelligent Data Mining: Techniques and Applications, pp. 337–354. Springer, Berlin (2005)CrossRefGoogle Scholar
  68. 68.
    Büyüközkan, G., Göcer, F., Feyzioǧlu, O.: Cloud computing technology selection based on interval-valued intuitionistic fuzzy MCDM methods. Soft Comput. 22(15), 5091–5114 (2018).  https://doi.org/10.1007/s00500-018-3317-4CrossRefGoogle Scholar
  69. 69.
    Büyüközkan, G., Göcer, F.: An extension of ARAS methodology under Interval Valued Intuitionistic Fuzzy environment for Digital Supply Chain. Appl. Soft Comput. J. 69, 634–654 (2018). doi: https://doi.org/10.1016/j.asoc.2018.04.040CrossRefGoogle Scholar
  70. 70.
    Büyüközkan, G., Göcer, F.: An extension of MOORA approach for group decision making based on interval valued intuitionistic fuzzy numbers in digital supply chain. In: Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17-th World Congress of International, INSPEC Accession Number: 17151170, pp. 1–6 (2017).  https://doi.org/10.1109/IFSA-SCIS.2017.8023358
  71. 71.
    Büyüközkan, G., Göcer, F.: Smart medical device selection based on interval valued intuitionistic fuzzy VIKOR. Adv. Intell. Syst. Comput. 641, 306–317 (2018).  https://doi.org/10.1007/978-3-319-66830-7_28CrossRefGoogle Scholar
  72. 72.
    Büyüközkan, G., Göcer, F., Feyzioǧlu, O.: Cloud computing technology selection based on interval valued intuitionistic fuzzy COPRAS. Adv. Intell. Syst. Comput. 641, 318–329 (2018).  https://doi.org/10.1007/978-3-319-66830-7_29CrossRefGoogle Scholar
  73. 73.
    Callejas Bedrega, B., Visintin, L., Reiser, R.H.S.: Index, expressions and properties of interval-valued intuitionistic fuzzy implications. Trends Appl. Comput. Math. 14(2), 193–208 (2013)Google Scholar
  74. 74.
    Cao, Y.-X., Zhou, H., Wang, J.-Q.: An approach to interval-valued intuitionistic stochastic multi-criteria decision-making using set pair analysis. Int. J. Mach. Learn. Cybern. 9(4), 629–640 (2018).  https://doi.org/10.1007/s13042-016-0589-9CrossRefGoogle Scholar
  75. 75.
    Chen, X.-H., Dai, Z.-J., Liu, X.: Approach to interval-valued intuitionistic fuzzy decision making based on entropy and correlation coefficient. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 35(4), 791–795 (2013)Google Scholar
  76. 76.
    Chen, S.M., Lee, L.W., Liu, H.C., Yang, S.W.: Multiattribute decision making based on interval valued intuitionistic fuzzy values. Expert Syst. Appl. 39(12), 10343–10351 (2012)CrossRefGoogle Scholar
  77. 77.
    Chen, S.-M., Lee, L.-W.: A new method for multiattribute decision making using interval-valued intuitionistic fuzzy values In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016695, pp. 148–153 (2011)Google Scholar
  78. 78.
    Chen, S. M., Li, T. S., Yang, S. W., Sheu, T. W. A new method for evaluating students’ answerscripts based on interval valued intuitionistic fuzzy sets (2012) Proceedings International Conference on Machine Learning and Cybernetics, 4, art. no. 6359580, 1461-1467Google Scholar
  79. 79.
    Chen, S.-M., Yang, M.-W., Liau, C.-J.: A new method for multicriteria fuzzy decision making based on ranking interval-valued intuitionistic fuzzy values. In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016698, pp. 154–159 (2011)Google Scholar
  80. 80.
    Chen, X., Yang, L., Wang, P., Yue, W.: A fuzzy multicriteria group decision-making method with new entropy of interval-valued intuitionistic fuzzy sets. J. Appl. Math. art. no. 827268 (2013)Google Scholar
  81. 81.
    Chen, X., Yang, L., Wang, P., Yue, W.: An effective interval-valued intuitionistic fuzzy entropy to evaluate entrepreneurship orientation of online P2P lending platforms. Adv. Math. Phys. art. no. 467215 (2013)Google Scholar
  82. 82.
    Chen, S.M., Yang, M.W., Yang, S.W., Sheu, T.W., Liau, C.J.: Multicriteria fuzzy decision making based on interval valued intuitionistic fuzzy sets. Expert Syst. Appl. 39(15), 12085–12091 (2012)CrossRefGoogle Scholar
  83. 83.
    Chen, T.-Y.: Data construction process and qualiflex-based method for multiple-criteria group decision making with interval-valued intuitionistic fuzzy sets. Int. J. Inf. Technol. Decis. Mak. 12(3), 425–467 (2013)CrossRefGoogle Scholar
  84. 84.
    Chen, T.-Y.: An interval-valued intuitionistic fuzzy LINMAP method with inclusion comparison possibilities and hybrid averaging operations for multiple criteria group decision making. Knowl.-Based Syst. 45, 134–146 (2013)CrossRefGoogle Scholar
  85. 85.
    Chen, S.-M., Han, W.-H.: An improved MADM method using interval-valued intuitionistic fuzzy values. Inf. Sci. 467, 489–505 (2018).  https://doi.org/10.1016/j.ins.2018.07.062MathSciNetCrossRefGoogle Scholar
  86. 86.
    Chen, S.-M., Han, W.-H.: A new multiattribute decision making method based on multiplication operations of interval-valued intuitionistic fuzzy values and linear programming methodology. Inf. Sci. 429, 421–432 (2018).  https://doi.org/10.1016/j.ins.2017.11.018MathSciNetCrossRefGoogle Scholar
  87. 87.
    Chen, S.-M., Li, T.-S.: Evaluating students’ answerscripts based on interval-valued intuitionistic fuzzy sets. Inf. Sci. 235, 308–322 (2013)CrossRefGoogle Scholar
  88. 88.
    Chen, Q., Xu, Z., Liu, S., et al.: A method based on interval-valued intuitionistic fuzzy entropy for multiple attribute decision making. Inf. Int. Interdiscip. J. 13(1), 67–77 (2010)Google Scholar
  89. 89.
    Chen, T.-Y., Wang, H.-P., Lu, Y.-Y.: A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: a comparative perspective. Expert Syst. Appl. 38(6), 7647–7658 (2011)CrossRefGoogle Scholar
  90. 90.
    Chen, S.-M., Kuo, L.-W., Zou, X.-Y.: Multiattribute decision making based on Shannon’s information entropy, non-linear programming methodology, and interval-valued intuitionistic fuzzy values. Inf. Sci. 465, 404–424 (2018).  https://doi.org/10.1016/j.ins.2018.06.047MathSciNetCrossRefGoogle Scholar
  91. 91.
    Cheng, S.-H.: Autocratic multiattribute group decision making for hotel location selection based on interval-valued intuitionistic fuzzy sets. Inf. Sci. 427, 77–87 (2018).  https://doi.org/10.1016/j.ins.2017.10.018MathSciNetCrossRefGoogle Scholar
  92. 92.
    Chountas, P., Kolev, B., Rogova, E., Tasseva, V., Atanassov, K.: Generalized Nets in Artificial Intelligence. Vol. 4: Generalized nets, Uncertain Data and Knowledge Engineering. “Prof. M. Drinov”. Academic Publishing House, Sofia (2007)Google Scholar
  93. 93.
    Chountas, P., Sotirova, E., Kolev, B., Atanassov, K.: On intuitionistic fuzzy expert systems with temporal components. In: Computational Intelligence, Theory and Applications, pp. 241–249. Springer, Berlin (2006)Google Scholar
  94. 94.
    Chu, J., Liu, X., Wang, L., Wang, Y.: A group decision making approach based on newly defined additively consistent interval-valued intuitionistic preference relations. Int. J. Fuzzy Syst. 20(3), 1027–1046 (2018).  https://doi.org/10.1007/s40815-017-0353-7MathSciNetCrossRefGoogle Scholar
  95. 95.
    Cios, K., Pedrycz, W., Swiniarski, R.: Data Mining Methods for Knowledge Discovery. Kluwer (1998)Google Scholar
  96. 96.
    Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data Mining. A Knowledge Discovery Approach. Springer, New York (2007)zbMATHGoogle Scholar
  97. 97.
    Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  98. 98.
    Dahan, H., Cohen, S., Rokach, L., Maimon, O.: Proactive Data Mining with Decision Trees. Springer, New York (2014)CrossRefGoogle Scholar
  99. 99.
    Deschrijver, G., Kerre, E.: Aggregation operators in interval-valued fuzzy and Atanassov’s intuitionistic fuzzy set theory. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 183–203. Springer, Berlin (2008)Google Scholar
  100. 100.
    Doukovska, L., Atanassova, V., Shahpazov, G., Capkovic, F.: InterCriteria analysis applied to variuos EU enterprises. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design, Milan, Italy, pp. 284–291 (2015)Google Scholar
  101. 101.
    Doukovska, L., Atanassova, V., Sotirova, E., Vardeva, I., Radeva, I.: Defining consonance thresholds in intercriteria analysis: an overview. In Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, pp. 161–179. Springer, Cham (2019)Google Scholar
  102. 102.
    Doukovska, L., Atanassova, V.: InterCriteria Analysis approach in radar detection threshold analysis. Notes Intuit. Fuzzy Sets 21(4), 129–135 (2015). ISSN: 1310-4926Google Scholar
  103. 103.
    Doukovska, L., Shahpazov, G., Atanassova, V.: Intercriteria analysis of the creditworthiness of SMEs. A case study. Notes Intuit. Fuzzy Sets 22(2), 108–118 (2016)Google Scholar
  104. 104.
    Dymova, L., Sevastjanov, P., Tikhonenko, A.: A new method for comparing interval valued intuitionistic fuzzy values. Lecture Notes in Computer Science, vol. 7267 LNAI (PART 1), pp. 221–228 (2012)Google Scholar
  105. 105.
    Dymova, L., Sevastjanov, P., Tikhonenko, A.: Two-criteria method for comparing real-valued and interval-valued intuitionistic fuzzy values. Knowl.-Based Syst. 45, 166–173 (2013)CrossRefGoogle Scholar
  106. 106.
    El Alaoui, M., Ben-Azza, H., El Yassini, K.: Optimal weighting method for interval-valued intuitionistic fuzzy opinions. Notes Intuit. Fuzzy Sets 24(3), 106–110 (2018)Google Scholar
  107. 107.
    Eyoh, I., John, R., De Maere, G.: Interval type-2 intuitionistic fuzzy logic for regression problems. IEEE Trans. Fuzzy Syst. 26(4), Article number 8115302, 2396–2408 (2018)CrossRefGoogle Scholar
  108. 108.
    Eyoh, I., John, R., De Maere, G.: Time series forecasting with interval type-2 intuitionistic fuzzy logic systems. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), INSPEC Accession Number: 17137939 (2017).  https://doi.org/10.1109/FUZZ-IEEE.2017.8015463
  109. 109.
    Fan, L., Lei, Y.-J.: Probability of interval-valued intuitionistic fuzzy events and its general forms. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 33(2), 350–355 (2011)zbMATHGoogle Scholar
  110. 110.
    Fan, L., Lei, Y.-J., Duan, S.-L.: Interval-valued intuitionistic fuzzy statistic adjudging and decision-making. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 31(9), 1790–1797 (2011)Google Scholar
  111. 111.
    Feyzioǧlu, O., Fethullah, G., Gulcin, B.: “Interval-valued intuitionistic fuzzy MULTIMOORA approach for new product development.” In: World Scientific Proceedings Series on Computer Engineering and Information Science: Volume 11. Data Science and Knowledge Engineering for Sensing Decision Support, pp. 1066–1073 (2018).  https://doi.org/10.1142/9789813273238_0135
  112. 112.
    Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start startegies. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 547–550 (2016)Google Scholar
  113. 113.
    Fidanova, S., Roeva, O.: Comparison of different metaheuristic algorithms based on intercriteria analysis. J. Comput. Appl. Math. 340, 615–628 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Fidanova, S., Roeva, O.: Intercriteria analysis of different variants of ACO algorithm for wireless sensor network positioning. Lect. Notes Comput. Sci. 11189, 88–96 (2019)CrossRefGoogle Scholar
  115. 115.
    Fidanova, S., Roeva, O., Mucherino, A., Kapanova, K.: Intercriteria analysis of ant algorithm with environment change for GPS surveying problem. Lect. Notes Comput. Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9883, 271–278 (2016)Google Scholar
  116. 116.
    Freitas, A.A.: A review of evolutionary algorithms for data mining. In: Maimon, O., Rokach, L. (eds.) Data and Knowledge Discovery Handbook, 2nd edn. pp. 371–400. Springer, New York (2010)CrossRefGoogle Scholar
  117. 117.
    Fu, S. et al.: Interval-valued intuitionistic fuzzy multi-attribute decision-making method based on prospect theory and grey correlation. Recent Pat. Comput. Sci. 11(3), 215–221 (2018)CrossRefGoogle Scholar
  118. 118.
    Garg, H., Kumar, K.: Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. J. Ind. Manag. Optim. 466–482 (2018).  https://doi.org/10.3934/jimo.2018162MathSciNetCrossRefGoogle Scholar
  119. 119.
    Garg, H.: Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. J. Ind. Manag. Optim. 14(1), 283–308 (2018).  https://doi.org/10.3934/jimo.2017047MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Garg, H., Agarwal, N., Tripathi, A.: Some improved interactive aggregation operators under interval-valued intuitionistic fuzzy environment and their application to decision making process. Sci. Iran. E 24(5), 2581–2604 (2017).  https://doi.org/10.24200/sci.2017.4386CrossRefGoogle Scholar
  121. 121.
    Georgieva, V., Angelova, N., Roeva, O., Pencheva, T.: Intercriteria analysis of wastewater treatment quality. J. Int. Sci. Publ.: Ecol. Saf. 10, 365–376 (2016)Google Scholar
  122. 122.
    Gong, Z., Ma, Y.: Multicriteria fuzzy decision making method under interval-valued intuitionistic fuzzy environment. In: International Conference on Machine Learning and Cybernetics, Baoding, 12–15 July 2009, vols. 1–6, 728–731 (2009)Google Scholar
  123. 123.
    Gong, Z.-T., Xie, T., Shi, Z.-H., Pan, W.-Q.: A multiparameter group decision making method based on the interval-valued intuitionistic fuzzy soft set. In: Proceedings—International Conference on Machine Learning and Cybernetics, vol. 1, art. no. 6016727, pp. 125–130 (2011)Google Scholar
  124. 124.
    Gou, X., Xu, Z.: Exponential operations for intuitionistic fuzzy numbers and interval numbers in multi-attribute decision making. Fuzzy Optim. Decis. Mak. 16(2), 183–204 (2017).  https://doi.org/10.1007/s10700-016-9243-yMathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Granichin, O., Volkovich, Z., Toledano-Kitai, D.: Randomized Algorithms in Automatic Control and Data Mining. Springer, Berlin (2015)CrossRefGoogle Scholar
  126. 126.
    Grosan, V., Abraham, A.: Intelligent Systems—A Modern Approach. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  127. 127.
    Grzymala-Busse, J.W.: Rule induction. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp. 249–265. Springer, New York (2010)CrossRefGoogle Scholar
  128. 128.
    Gu, X., Wang, Y., Yang, B.: Method for selecting the suitable bridge construction projects with interval-valued intuitionistic fuzzy information. Int. J. Digit. Content Technol. Appl. 5(7), 201–206 (2011)CrossRefGoogle Scholar
  129. 129.
    Gupta, P., Mehlawat, M.K., Grover, N., Pedrycz, W.: Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Appl. Soft Comput. J. 69, 554–567 (2018).  https://doi.org/10.1016/j.asoc.2018.04.032CrossRefGoogle Scholar
  130. 130.
    Hadjyisky L., Atanassov K., Generalized net model of the intuitionistic fuzzy neural networks. Advances in Modelling & Analysis, vol. 23, No. 2, pp. 59–64. AMSE Press (1995)Google Scholar
  131. 131.
    Hadjyisky, L., Atanassov, K.: Intuitionistic fuzzy model of a neural network. BUSEFAL 54, 36–39 (1993)Google Scholar
  132. 132.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006)Google Scholar
  133. 133.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press (2001)Google Scholar
  134. 134.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning—Data Mining, Inference and Prediction. Springer, New York (2001)zbMATHGoogle Scholar
  135. 135.
    Hedayati, H.: Interval-valued intuitionistic fuzzy subsemimodules with (S; T)-norms. Ital. J. Pure Appl. Math. 27, 157–166 (2010)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Hilderman, R., Peckham, T.: Statistical methodologies from mining potentially interesting contrast sets. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining, pp. 153–177. Springer, Berlin (2007)CrossRefGoogle Scholar
  137. 137.
    Holmes, D., Tweedale, J., Jain, L.: Data mining techniques in clustering, association and classification. In: Holmes, D., Jain, L. (eds.) Data Mining: Foundations and Intelligent Paradigms, Vol. 1: Clustering, Association and Classification, pp. 1–6. Springer, Berlin (2012)Google Scholar
  138. 138.
    Hong, T.-P., Chen, C.-H., Wu, Y.-L., Tseng, V.S.: Fining active membership functions in fuzzy data mining. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 179–196. Springer, Berlin (2008)CrossRefGoogle Scholar
  139. 139.
    Hong, D.H.: A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 95(1), 113–117 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Hu, L.: An approach to construct entropy and similarity measure for interval valued Intuitionistic fuzzy sets. In: Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, art. no. 6244285, pp. 1777–1782 (2012)Google Scholar
  141. 141.
    Hui, F., Shi, X., Yang, L. A novel efficient approach to evaluating the security of wireless sensor network with interval valued intuitionistic fuzzy information. Adv. Inf. Sci. Serv. Sci. 4(7), 83–89 (2012)Google Scholar
  142. 142.
    Huo, L., Liu, B., Cheng, L.: Method for interval-valued intuitionistic fuzzy multicriteria decision making with gray relation analysis. In: International Conference on Engineering and Business Management, Chengdu, 25–27 Mar 2010, pp. 1342–1345 (2010)Google Scholar
  143. 143.
    Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData—Software for InterCriteria analysis. Int. J. Bioautomation 22(1), 1–10 (2018)Google Scholar
  144. 144.
    Izadikhah, M., Group DecisionMaking process for supplier selection with TOPSISMethod under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012, Article ID 407942, 14 pages.  https://doi.org/10.1155/2012/407942MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Joshi, D., Kumar, S.: Improved accuracy function for interval-valued intuitionistic fuzzy sets and its application to multi–attributes group decision making. Cybern. Syst. 49(1), 64–76 (2018).  https://doi.org/10.1080/01969722.2017.1412890MathSciNetCrossRefGoogle Scholar
  146. 146.
    Joshi, D.K., Bisht, K., Kumar, S.: Interval-valued intuitionistic uncertain linguistic information-based TOPSIS method for multi-criteria group decision-making problems. Adv. Intell. Syst. Comput. 696, 305–315 (2018).  https://doi.org/10.1007/978-981-10-7386-1_27CrossRefGoogle Scholar
  147. 147.
    Kacprzyk, A., Sotirov, S., Sotirova, E., Shopova, D., Georgiev, P.: Application of intercriteria analysis in the finance and accountancy positions. Notes Intuit. Fuzzy Sets 23(4), 84–90 (2017)Google Scholar
  148. 148.
    Kasabov, N.: Evolving Connectionist Systems. Springer, London (2007)zbMATHGoogle Scholar
  149. 149.
    Kaufmann, A.: Introduction a la Theorie des Sour-Ensembles Flous. Masson, Paris (1977)zbMATHGoogle Scholar
  150. 150.
    Kavita, Y., Kumar, S.: A multi-criteria interval-valued intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Lect. Notes Artif. Intell. 5908, 303–312 (2009)Google Scholar
  151. 151.
    Kecman, V.: Learning and Soft Computing. MIT Press (2001)Google Scholar
  152. 152.
    Klosgen, W., Zytkow, J. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)zbMATHGoogle Scholar
  153. 153.
    Kolev, B., El-Darzi, E., Sotirova, E., Petronias, I., Atanassov, K., Chountas, P., Kodogianis, V.: Generalized Nets in Artificial Intelligence. Vol. 3: Generalized nets, Relational Data Bases and Expert Systems. “Prof. M. Drinov” Academic Publishing House, Sofia (2006)Google Scholar
  154. 154.
    Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. Novel Developments in Uncertainty Representation and Processing, Advances in Intelligent Systems and Computing, pp. 365–372. Springer (2016)Google Scholar
  155. 155.
    Krawczak, M., El-Darzi, E., Atanassov, K., Tasseva, V.: Generalized net for control and optimization of real processes through neural networks using intuitionistic fuzzy estimations. Notes Intuit. Fuzzy Sets 13(2), 54–60 (2007)Google Scholar
  156. 156.
    Krishankumar, R., Ravichandran, K., Ramprakash, R.: A scientific decision framework for supplier selection under interval valued intuitionistic fuzzy environment. Math. Probl. Eng. 2017, Article ID 1438425, 18 pages (2017)Google Scholar
  157. 157.
    Krumova, S., Todinova, S., Mavrov, D., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.: Intercriteria analysis of calorimetric data of blood serum proteome. Biochimica et Biophysica Acta-Gen. Subj. 2017, 409–417 (1861)Google Scholar
  158. 158.
    Kumar, S., Biswas, A.: TOPSIS based on linear programming for solving MADM problems in interval-valued intuitionistic fuzzy settings. In: Proceedings of the 4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018, pp. 1–6 (2018).  https://doi.org/10.1109/RAIT.2018.8389071
  159. 159.
    Kumar, K., Garg, H.: TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37(2), 1319–1329 (2018).  https://doi.org/10.1007/s40314-016-0402-0MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    Kuncheva L., Atanassov, A.: An intuitionistic fuzzy RBF network. In: Proceedings of EUFIT’96, Aachen, 2–5 Sept 1996, pp. 777–781 (1996)Google Scholar
  161. 161.
    Li, J., Chen, W., Yang, Z., Li, C., Sellers, J.S.: Dynamic interval-valued intuitionistic normal fuzzy aggregation operators and their applications to multi-attribute decision-making. J. Intell. Fuzzy Syst. 35(4), 3937–3954 (2018).  https://doi.org/10.3233/JIFS-169717CrossRefGoogle Scholar
  162. 162.
    Li, J., Lin, M., Chen, J.: ELECTRE method based on interval valued intuitionistic fuzzy number. Appl. Mech. Mater. 220223, 2308–2312 (2012)CrossRefGoogle Scholar
  163. 163.
    Li, P., Liu, S.F., Fang, Z.G.: Interval valued intuitionistic fuzzy numbers decision making method based on grey incidence analysis and MYCIN certainty factor. Kongzhi yu Juece/Control Decis. 27(7), 1009–1014 (2012)Google Scholar
  164. 164.
    Li, Y., Yin, J., Wu, G.: Model for evaluating the computer network security with interval valued intuitionistic fuzzy information. Int. J. Digit. Content Technol. Appl. 6(6), 140–146 (2012)Google Scholar
  165. 165.
    Li, J., Zhang, X.-L., Gong, Z.-T.: Aggregating of interval-valued intuitionistic uncertain linguistic variables based on archimedean t-norm and it applications in group decision makings. J. Comput. Anal. Appl. 24(5), 874–885 (2018)Google Scholar
  166. 166.
    Li, D.-F.: Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Syst. Appl. 37(8), 5939–5945 (2010)CrossRefGoogle Scholar
  167. 167.
    Li, D.-F.: TOPSIS-Based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 18(2), 299–311 (2010)Google Scholar
  168. 168.
    Li, D.-F.: Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations. Fuzzy Optim. Decis. Mak. 10(1), 45–58 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Li, D.-F.: Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information. Appl. Soft Comput. J. 11(4), 3402–3418 (2011)CrossRefGoogle Scholar
  170. 170.
    Li, D.-F.: Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations. Fuzzy Optim. Decis. Mak. 10, 45–58 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Li, P., Liu, S.-F.: Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D-S theory of evidence. Acta Automatica Sinica 37(8), 993–998 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Li, K.W., Wang, Z.: Notes on “multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment”. J. Syst. Sci. Syst. Eng. 19(4), 504–508 (2010)CrossRefGoogle Scholar
  173. 173.
    Li, B., Yue, X., Zhou, G.: Model for supplier selection in interval-valued intuitionistic fuzzy setting. J. Converg. Inf. Technol. 6(11), 12–16 (2011)Google Scholar
  174. 174.
    Lin, J., Zhang, Q.: Some continuous aggregation operators with interval-valued intuitionistic fuzzy information and their application to decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(2), 185–209 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Lin, J., Zhang, Q.: Note on continuous interval-valued intuitionistic fuzzy aggregation operator. Appl. Math. Model. 43, 670–677 (2017).  https://doi.org/10.1016/j.apm.2016.09.003MathSciNetCrossRefGoogle Scholar
  176. 176.
    Liu, D., Chen, X., Peng, D.: Interval-Valued intuitionistic fuzzy ordered weighted cosine similarity measure and its application in investment decision-making. Complexity 2017, Article ID 1891923, 11 pages (2017).  https://doi.org/10.1155/2017/1891923MathSciNetzbMATHGoogle Scholar
  177. 177.
    Liu, J., Deng, X., Wei, D., Li , Y., Deng, Y.: Multi attribute decision making method based on interval valued intuitionistic fuzzy sets and D S theory of evidence. In: 24th Chinese, Date of Conference Control and Decision Conference (CCDC), 23–25 May 2012, pp. 2651–2654 (2012)Google Scholar
  178. 178.
    Liu, J., Li, Y., Deng, X., Wei, D., Deng, Y.: Multi attribute Decision making based on interval valued intuitionistic fuzzy sets. J. Inf. Comput. Sci. 9(4), 1107–1114 (2012)Google Scholar
  179. 179.
    Liu, J., Li, Y., Deng, X., Wei, D., Deng, Y.: Multi-attribute decision-making based on interval-valued intuitionistic fuzzy sets. J. Inf. Comput. Sci. 9(4), 1107–1114 (2012)Google Scholar
  180. 180.
    Liu, Z., Teng, F., Liu, P., Ge, Q.: Interval-valued intuitionistic fuzzy power Maclaurin symmetric mean aggregation operators and their application to multiple attribute group decision-making. Int. J. Uncertain. Quantif. 8(3), 211–232 (2018).  https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020702MathSciNetCrossRefGoogle Scholar
  181. 181.
    Liu, P., Wang, P.: Some interval-valued intuitionistic fuzzy Schweizer–Sklar power aggregation operators and their application to supplier selection. Int. J. Syst. Sci. 49(6), 1188–1211.  https://doi.org/10.1080/00207721.2018.1442510MathSciNetCrossRefGoogle Scholar
  182. 182.
    Liu, P.: Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators. Comput. Ind. Eng. 108, 199–212 (2017).  https://doi.org/10.1016/j.cie.2017.04.033CrossRefGoogle Scholar
  183. 183.
    Liu, Y., Bi, J., Fan, Z.: A method for ranking products through online reviews based on sentiment classification and interval-valued intuitionistic fuzzy TOPSIS. J. Inf. Technol. Decis. Mak. 16(06), 1497–1522 (2017).  https://doi.org/10.1142/S021962201750033XCrossRefGoogle Scholar
  184. 184.
    Looney, C.: Fuzzy Petri Nets for rule-based decision making. IEEE Trans. Syst. Man Cybern. 22, 178–183 (1988)CrossRefGoogle Scholar
  185. 185.
    Maimon, O., Rokach, L.: Introduction to knowledge discovery and data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 1–15. Springer, New York (2010)zbMATHGoogle Scholar
  186. 186.
    Marinov, P., Fidanova, S.: Intercriteria and correlation analyses: similarities, differences and simultaneous use. Ann. “Inf.” Sect. Union Sci. Bulg. 8, 45–53 (2016)Google Scholar
  187. 187.
    Meng, F., Tang, J., Wang, P., Chen, X.: A programming-based algorithm for interval-valued intuitionistic fuzzy group decision making. Knowl.-Based Syst. 144, 122–143 (2018).  https://doi.org/10.1016/j.knosys.2017.12.033CrossRefGoogle Scholar
  188. 188.
    Meyer-Nieberg, S., Beyer, H.-G.: Self-adaptation in evolutionary algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, vol. 02007, No. 54, pp. 47–75. Springer, BerlinGoogle Scholar
  189. 189.
    Mishra, A.R., Rani, P.: Biparametric information measures-based TODIM technique for interval-valued intuitionistic fuzzy environment. Arab. J. Sci. Eng. 43(6), 3291–3309 (2018).  https://doi.org/10.1007/s13369-018-3069-6zbMATHCrossRefGoogle Scholar
  190. 190.
    Mishra, A.R., Rani, P.: Interval-Valued intuitionistic fuzzy WASPAS method: application in reservoir flood control management policy. Group Decis. Negot. 27(6), 1047–1078 (2018).  https://doi.org/10.1007/s10726-018-9593-7CrossRefGoogle Scholar
  191. 191.
    Mondal, T.K., Samanta, S.: Topology of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 119(3), 483–494 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    Moyle, S.: Collaborative data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 1029–1039. Springer, New York (2010)CrossRefGoogle Scholar
  193. 193.
    Mu, Z., Zeng, S., Liu, Some, Q.: interval-valued intuitionistic fuzzy zhenyuan aggregation operators and their application to multi-attribute decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 26(4), 633–653 (2018).  https://doi.org/10.1142/S0218488518500290MathSciNetCrossRefGoogle Scholar
  194. 194.
    Nayagam, L.G., Sivaraman, G.: Ranking of interval-valued intuitionistic fuzzy sets. Appl. Soft Comput. J. 11(4), 3368–3372 (2011)CrossRefGoogle Scholar
  195. 195.
    Nayagam, L.G., Muralikrishnan, S., Sivaraman, G.: Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Syst. Appl. 38(3), 1464–1467 (2011)CrossRefGoogle Scholar
  196. 196.
    Nayagam, V., Jeevaraj, S., Dhanasekaran, P.: An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Comput. 21(23), 7077–7082 (2017).  https://doi.org/10.1007/s00500-016-2249-0CrossRefzbMATHGoogle Scholar
  197. 197.
    Nguyen, H.: A new generalized knowledge measure in multi-attribute group decision making under interval-valued intuitionistic fuzzy environment. In: Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, pp. 156–163 (2018).  https://doi.org/10.1145/3184066.3184067. ISBN: 978-1-4503-6336-5
  198. 198.
    Orriols-Puig, A., Bernado-Mansilla, E.: Mining imbalanced data with learning classifier systems. In: Bull, L., Ester, B.-M., Holmes, J. (eds.) Learning Classifier Systems in Data Mining, pp. 123–145. Springer, Berlin (2008)Google Scholar
  199. 199.
    Oztaysi, B., Onar, S., Kahraman, C., Yavuz, M.: Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. Transp. Res. Part D: Transp. Environ. 53, 128–148 (2017).  https://doi.org/10.1016/j.trd.2017.04.003CrossRefGoogle Scholar
  200. 200.
    Park, C.: \(([r, s], [t, u])\)-Interval-valued intuitionistic fuzzy alpha generalized continuous mappings. Korean J. Math. 25(2), 261–278 (2017)MathSciNetGoogle Scholar
  201. 201.
    Park, D., Kwun, Y.C., Park, J.H., et al.: Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Math. Comput. Model. 50(9–10), 1279–1293 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Park, J.H., Park, I.Y., Kwun, Y.C., Tan, X.: Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 35(5), 2544–2556 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    Pechenizkiy, M., Puuronen, S., Tsymbal, A.: Does relevance matter to data mining research? In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 251–275. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  204. 204.
    Pei, Z., Lu, J. S., Zheng, L.: Generalized interval valued intuitionistic fuzzy numbers with applications in workstation assessment. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 32(10), 2198–2206 (2012)Google Scholar
  205. 205.
    Pekala, B., Balicki, K.: Interval-valued intuitionistic fuzzy sets and similarity measure. Iran. J. Fuzzy Syst. Article 6, 14(4), 87–98 (2017).  https://doi.org/10.22111/IJFS.2017.3327
  206. 206.
    Pena-Ayala, A. (ed.): Educational Data Mining. Springer, Cham (2014)Google Scholar
  207. 207.
    Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model, novel developments in uncertainty representation and processing, Part V. Advances in Intelligent Systems and Computing, pp. 385–397. Springer (2016)Google Scholar
  208. 208.
    Pencheva, T., Angelova, M.: InterCriteria analysis of simple genetic algorithms performance, chapter. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, vol. 681, pp. 147–159. Springer (2017)Google Scholar
  209. 209.
    Pencheva, T., Roeva, O., Angelova, M.: Investigation of genetic algorithm performance based on different algorithms for intercriteria relations calculation, chapter. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing, Vol. 10665 of Lecture Notes in Computer Science, pp. 390–398 (2018)CrossRefGoogle Scholar
  210. 210.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: Intercriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuit. Fuzzy Sets 21(2), 99–110 (2015)zbMATHGoogle Scholar
  211. 211.
    Qi, F.: Research on the comprehensive evaluation of sports management system with interval valued intuitionistic fuzzy information. Int. J. Adv. Comput. Technol. 4(6), 288–294 (2012)Google Scholar
  212. 212.
    Qi, X.-W., Liang, C.-Y., Zhang, E.-Q., Ding, Y.: Approach to interval-valued intuitionistic fuzzy multiple attributes group decision making based on maximum entropy. Xitong Gongcheng Lilun yu Shijian/Syst. Eng. Theory Pract. 31(10), 1940–1948 (2011)Google Scholar
  213. 213.
    Qi, X.-W., Liang, C.-Y., Cao, Q.-W., Ding, Y.: Automatic convergent approach in interval-valued intuitionistic fuzzy multi-attribute group decision making. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 33(1), 110–115 (2011)zbMATHGoogle Scholar
  214. 214.
    Qin, Y., Liu, Y., Liu, J.: A novel method for interval-value intuitionistic fuzzy multicriteria decision-making problems with immediate probabilities based on OWA distance operators. Math Probl. Eng. 2018, Art. no. 1359610 (2018).  https://doi.org/10.1155/2018/1359610Google Scholar
  215. 215.
    Rajesh, K., Srinivasan, R.: Application of interval-valued intuitionistic fuzzy sets of second type in pattern recognition. Notes Intuit. Fuzzy Sets 24(1), 80–86 (2018)CrossRefGoogle Scholar
  216. 216.
    Rani, P., Jain, D., Hooda, D.S.: Shapley function based interval-valued intuitionistic fuzzy VIKOR technique for correlative multi-criteria decision making problems. Iran. J. Fuzzy Syst. 15(1), 25–54 (2018).  https://doi.org/10.22111/ijfs.2018.3577
  217. 217.
    Reiser, R., Bedregal, B., Bustince, H., Fernandez, J.: Generation of interval valued intuitionistic fuzzy implications from K operators, fuzzy implications and fuzzy coimplications. Commun. Comput. Inf. Sci. CCIS (PART 2) 298, 450–460 (2012)Google Scholar
  218. 218.
    Ren, H., Chen, H., Fei, W., Li, D.: A MAGDM method considering the amount and reliability information of interval-valued intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 19(3), 715–725 (2017).  https://doi.org/10.1007/s40815-016-0179-8CrossRefGoogle Scholar
  219. 219.
    Ribagin, S., Zaharieva, B., Radeva, I., Pencheva, T.: Generalized net model of proximal humeral fractures diagnosing. Int. J. Bioautomation 22(1), 11–20 (2018).  https://doi.org/10.7546/ijba.2018.22.1.11-20CrossRefGoogle Scholar
  220. 220.
    Robinson, J.: Contrasting correlation coefficient with distance measure in interval valued intuitionistic trapezoidal fuzzy MAGDM Problems (Chapter 60). Fuzzy Syst. Concepts Methodol. Tools Appl. 1448–1479 (2017).  https://doi.org/10.4018/978-1-5225-1908-9.ch060
  221. 221.
    Roeva O., Pencheva, T., Angelova, M., Vassilev, P.: Intercriteria analysis by pairs and triples of genetic algorithms application for models identification, chapter. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization, Vol. 655 of Studies in Computational Intelligence, pp. 193–218 (2016)Google Scholar
  222. 222.
    Roeva O., Vassilev, P., Angelova, M., Pencheva, T.: Intercriteria analysis of parameters relations in fermentation processes models, chapter. In: Nunes, M., Nguyen, N., Camacho, D., Trawinski, B. (eds.) Computational Collective Intelligence, vol. 9330 of Lecture Notes in Artificial Intelligence, pp. 171–181 (2015)CrossRefGoogle Scholar
  223. 223.
    Roeva O., Zoteva, D.: Knowledge discovery from data: InterCriteria Analysis of mutation rate influence. Notes Intuit. Fuzzy Sets 24(1), 120–130 (2018)CrossRefGoogle Scholar
  224. 224.
    Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Studies in Computational Intelligence, pp. 107–126. Springer (2016)Google Scholar
  225. 225.
    Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 5, pp. 501–506 (2015)Google Scholar
  226. 226.
    Roeva, O., Pencheva, T., Angelova, M., Vassilev, P.: InterCriteria analysis by pairs and triples of genetic algorithms application for models identification. Recent Advances in Computational Optimization, Studies in Computational Intelligence, pp. 193–218. Springer (2016)Google Scholar
  227. 227.
    Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for interCriteria relations calculation. In: IEEE 8th International Conference on Intelligent Systems, Sofia, Bulgaria, 4–6 Sept 2016, pp. 567–572 (2016)Google Scholar
  228. 228.
    Roeva, O., Vassilev, P., Ikonomov, N., Angelova, M., Su, J., Pencheva, T.: On different algorithms for interCriteria relations calculation, chapter. In: Hadjiski, M., Atanassov, K.T. (eds.) Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, Vol. 757 of Studies in Computational Intelligence, pp. 143–160 (2019)Google Scholar
  229. 229.
    Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. In: Atanassov, K.T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tre, G., Zadrożny, S. (eds.) Novel Developments in Uncertainty Representation and Processing, Part V, Advances in Intelligent Systems and Computing, vol. 401, pp. 301–313 (2016)Google Scholar
  230. 230.
    Roeva, O., Fidanova, S.: InterCriteria analysis of relations between model parameters estimates and ACO performance. Adv. Comput. Ind. Math. Stud. Comput. Intell. 681, 175–186 (2017)Google Scholar
  231. 231.
    Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)Google Scholar
  232. 232.
    Roeva, O., Vassilev, P., Fidanova, S., Paprzycki, M.: InterCriteria analysis of genetic algorithms performance. Stud. Comput. Intell. 655, 235–260 (2016)MathSciNetGoogle Scholar
  233. 233.
    Roeva, O., Vassilev, P., Chountas, P.: Application of topological operators over data from InterCriteria analysis, FQAS 2017. LNAI 10333(215–225), 19 (2017).  https://doi.org/10.1007/978-3-319-59692-1CrossRefGoogle Scholar
  234. 234.
    Roeva, O., Fidanova, S., Paprzycki, M.: Comparison of different ACO start strategies based on InterCriteria analysis. Stud. Comput. Intell. Book Ser. 717, 53–72 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  235. 235.
    Roeva, O., Fidanova, S., Luque, G., Paprzycki, M.: Intercriteria analysis of ACO performance for workforce planning problem. Recent Adv. Comput. Optim. 795, 47–67 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    Rokach, L.: A survey of clustering algorithms, In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., pp. 269–298. Springer, New York (2010)CrossRefGoogle Scholar
  237. 237.
    Rud, O.P.: Data Mining Cookbook. Wiley, Danvers (2001)Google Scholar
  238. 238.
    Seifert, J.: Data Mining: An Overview, CRS Report for Congress, Order Code RL31798, Dec 2004Google Scholar
  239. 239.
    Shannon, A., Atanassov, K.: A first step to a theory of the intuitionistic fuzzy graphs. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, 28–30 Sept 1994, pp. 59–61 (1994)Google Scholar
  240. 240.
    Shen, L., Li, G., Liu, W.: Method of multi-attribute decision making for interval-valued intuitionistic fuzzy sets based on mentality function. Appl. Mech. Mater. 44–47, 1075–1079 (2011)Google Scholar
  241. 241.
    Shmueli, G., Patel, N., Bruce, P.: Data Mining for Business Intelligence. Wiley, Hoboken (2007)Google Scholar
  242. 242.
    Simovici, D., Djeraba, C.: Mathematical Tools for Data Mining, 2nd edn. Springer, London (2014)zbMATHCrossRefGoogle Scholar
  243. 243.
    Singh, S., Garg, H.: Symmetric triangular interval type-2 intuitionistic fuzzy sets with their applications in multi criteria decision making. Symmetry 10(9), art. no. 401 (2018).  https://doi.org/10.3390/sym10090401CrossRefGoogle Scholar
  244. 244.
    Sotirov S., Vardeva, I., Krawczak, M.: Iintuitionistic fuzzy multilayer perceptron as a part of integrated systems for early forest-fire detection. Intuitionistic Fuzzy Sets, Sofia, vol. 19, N: 3, pp. 81–89 (2013)Google Scholar
  245. 245.
    Sotirov, S., Atanassov, K.: Generalized nets in artificial intelligence. vol. 6: Generalized nets and Supervised Neural Networks. “Prof. M. Drinov” Academic Publishing House, Sofia (2012)Google Scholar
  246. 246.
    Sotirov, S., Atanassov, K.: Intuitionistic fuzzy feed forward neural network. Cybern. Inf. Technol. 9(2), 62–68 (2009)Google Scholar
  247. 247.
    Sotirov, S., Atanassova, V., Sotirova, E., Bureva, V., Mavrov, D.: Application of the intuitionistic fuzzy InterCriteria analysis method to a neural network preprocessing procedure. In: 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30.06-03.07.2015, Gijon, Spain, pp. 1559–1564 (2015).  https://doi.org/10.2991/ifsa-eusflat-15.2015.222
  248. 248.
    Sotirov, S., Atanassova, V., Sotirova, E., Doukovska, L., Bureva, V., Mavrov, D., Tomov, J.: Application of the intuitionistic fuzzy InterCriteria analysis method with triples to a neural network preprocessing procedure. Computational Intelligence and Neuroscience, Hindawi, vol. 2017, Article ID 2157852 (2017)Google Scholar
  249. 249.
    Sotirov, S., Kodogiannis, V., Blessing, R.E.: Intuitionistic fuzzy estimations for connections with Low Rate Wireless personal area networks. In: First International Workshop on on Intuitionistic Fuzzy Sets, Generalized Nets, and Knowledge Engineering, London, 6-7 Sept 2006, pp. 81–87 (2006)Google Scholar
  250. 250.
    Sotirov, S., Method for determining of intuitionistic fuzzy sets in discovering water floods by neural networks. Issue on Intuitionistic Fuzzy Sets and Generalized Nets, Warszawa, vol. 4, pp. 9–14 (2007)Google Scholar
  251. 251.
    Sotirov, S., Sotirova, E., Atanassova, V., Atanassov, K., Castillo, O., Melin, P., Petkov, T., Surchev, S.: A hybrid approach for modular neural network design using intercriteria analysis and intuitionistic fuzzy logic. Complexity 2018, Article ID 3927951, 11 pages.  https://doi.org/10.1155/2018/3927951CrossRefGoogle Scholar
  252. 252.
    Sotirov, S., Sotirova, E., Melin, P., Castillo, O., Atanassov, K.: Modular neural network preprocessing procedure with intuitionistic fuzzy intercriteria analysis method. In: Andreasen, T. at al. (eds.) Flexible Query Answering Systems 2015, pp. 175–186. Springer, Cham (2016)Google Scholar
  253. 253.
    Sotirov, S.: Determining of intuitionistic fuzzy sets in estimating probability of spam in the e-mail by the help of the neural network. Issue on Intuitionistic Fuzzy Sets and Generalized Nets, Warszawa, vol. 4, pp. 43–47 (2007)Google Scholar
  254. 254.
    Sotirov, S.: Opportunities for application of the intercriteria analysis method to neural network preprocessing procedures. Notes Intuit. Fuzzy Sets 21(4), 143–152 (2015)Google Scholar
  255. 255.
    Sotirov, S.: Intuitionistic fuzzy estimations for connections of the transmit routines of the bluetooth interface. Adv. Stud. Contemp. Math. 15(1), 99–108 (2007)zbMATHGoogle Scholar
  256. 256.
    Sotirov, S., Dimitrov, A.: Neural network for defining intuitionistic fuzzy estimation in petroleum recognition. Issue Intuit. Fuzzy Sets Gen. Nets 8, 74–78 (2010)Google Scholar
  257. 257.
    Sotirova, E., Bureva, V., Chountas, P., Krawczak, M.: An application of intercriteria decision making method to the rankings of universities in the United Kingdom. Notes Intuit. Fuzzy Sets 22(3), 112–119 (2016)Google Scholar
  258. 258.
    Sotirova, E., Bureva, V., Sotirov, S.: A generalized net model for evaluation process using intercriteria analysis method in the university. Imprecision and Uncertainty in Information Representation and Processing, Studies in Fuzziness and Soft Computing, pp. 389–399. Springer (2015)Google Scholar
  259. 259.
    Sotirova, E., Shannon, A.: Application of InterCriteria decision making to the rankings of Australian universities. Notes Intuit. Fuzzy Sets 21(4), 136–142 (2015). ISSN 1310-4926Google Scholar
  260. 260.
    Spurgin, A., Petkov, G.: Advances simulator data mining for operators’ performance assessment, In: Ruan, D., Chen, G., Kerre, E., Wets, G. (eds.) Intelligent Data Mining: Techniques and Applications, pp. 487–514. Springer, Berlin (2005)CrossRefGoogle Scholar
  261. 261.
    Stanujkić, D., Meidutė-Kavaliauskienė, I.: An approach to the production plant location selection based on the use of the Atanassov interval-valued intuitionistic fuzzy sets. Transport 33(3), 835–842 (2018)CrossRefGoogle Scholar
  262. 262.
    Stratiev, D., Nedelchev, A., Shishkova, I., Ivanov, A., Sharafutdinov, I., Nikolova, R., Mitkova, M., Yordanov, D., Rudnev, N., Belchev, Z., Atanassova, V., Atanassov, K.: Dependence of visbroken residue viscosity and vacuum residue conversion in a commercial visbreaker unit on feedstock quality. Fuel Process. Technol. 138, 595–604 (2015)CrossRefGoogle Scholar
  263. 263.
    Stratiev, D., Sotirov, S., Shishkova, I., Nedelchev, A., Sharafutdinov, I., Vely, A., Mitkova, M., Yordanov, D., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D.D., Rudnev, N., Ribagin, S.: Investigation of relationships between bulk properties and fraction properties of crude oils by application of the intercriteria analysis. Pet. Sci. Technol. 34(13), 1113–1120 (2015)CrossRefGoogle Scholar
  264. 264.
    Sumathi, S., Sivanandam, S.: Introduction to Data Mining and Applications, Berlin (2006)Google Scholar
  265. 265.
    Tan, C.: A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Syst. Appl. 38(4), 3023–3033 (2011)CrossRefGoogle Scholar
  266. 266.
    Tang, J., Meng, F., Zhang, Y.: Decision making with interval-valued intuitionistic fuzzy preference relations based on additive consistency analysis. Inf. Sci. 467, 115–134 (2018).  https://doi.org/10.1016/j.ins.2018.07.036MathSciNetCrossRefGoogle Scholar
  267. 267.
    Tao, Z., Liu, X., Chen, H., Zhou, L.: Ranking interval-valued fuzzy numbers with intuitionistic fuzzy possibility degree and its application to fuzzy multi-attribute decision making. Int. J. Fuzzy Syst. 19(3), 646–658 (2017)CrossRefGoogle Scholar
  268. 268.
    Tian, H., Li, J., Zhang, F., Xu, Y., Cui, C., Deng, Y., Xiao, S.: Entropy analysis on intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets and its applications in mode assessment on open communities. J. Adv. Comput. Intell. Intell. Inform. 22(1), 147–155 (2018).  https://doi.org/10.20965/jaciii.2018.p0147CrossRefGoogle Scholar
  269. 269.
    Tiwari, P., Gupta, P.: Entropy, distance and similarity measures under interval valued intuitionistic fuzzy environment. Informatica 42(4), 617–627 (2018).  https://doi.org/10.31449/inf.v42i4.1303CrossRefGoogle Scholar
  270. 270.
    Todorova, L., Vassilev, P., Surchev, J.: Using Phi coefficient to interpret results obtained by InterCriteria analysis. In: Novel Developments in Uncertainty Representation and Processing, Vol. 401, Advances in Intelligent Systems and Computing, pp. 231–239. Springer (2106).  https://doi.org/10.1007/978-3-319-26211-6_20Google Scholar
  271. 271.
    Tooranloo, H.S., Ayatollah, A.S., Karami, M.: Analysis of causal relationship between factors affecting the successful implementation of enterprise resource planning using intuitionistic fuzzy: DEMATEL. Int. J. Bus. Inf. Syst. 29(4), 436–458 (2018).  https://doi.org/10.1504/IJBIS.2018.096032CrossRefGoogle Scholar
  272. 272.
    Traneva, V., Tranev, S., Szmidt, E., Atanassov, K.: Three dimensional interCriteria analysis over intuitionistic fuzzy data. In: Advances in Fuzzy Logic and Technology’ 2017, vol. 3, 1, pp. 442–449. Springer, Cham (2018)Google Scholar
  273. 273.
    Traneva, V., Tranev, S.: Intuitionistic fuzzy InterCriteria approach to the assessment in a fast food restaurant. In: Advances in Intelligent Systems and Computing, Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making—Proceedings of the INFUS Conference, 23–25 July 2019, Istanbul, Turkey, vol. 1003 (2019). ISBN 978-3-030-23755-4.  https://doi.org/10.1007/978-3-030-23756-1Google Scholar
  274. 274.
    Tu, C.C., Chen, L.H.: Novel score functions for interval valued intuitionistic fuzzy values. In: Proceedings of the SICE Annual Conference, art. no. 6318743, pp. 1787–1790 (2012)Google Scholar
  275. 275.
    Valchev D., Sotirov, S.: Intuitionistic fuzzy detection Of signal availability In multipath wireles chanels, 14-th International Conference on Intuitionistic Fuzzy Sets, Sofia, pp. 24–29 (2009)Google Scholar
  276. 276.
    Vankova, D., Sotirova, E., Bureva, V.: An application of the InterCriteria method approach to health-related quality of life. Notes Intuit. Fuzzy Sets 21(5), 40–48 (2015)Google Scholar
  277. 277.
    Vardeva I., Sotirov, S.: Intuitionistic fuzzy estimation of damaged packets with multilayer perceptron. In: Proceedings of the Tenth International Workshop on Generalized Nets, IWGN’2009, Sofia, pp. 63–69 (2009)Google Scholar
  278. 278.
    Vassilev, P., Todorova, L., Andonov, V.: An auxiliary technique for InterCriteria analysis via a three dimensional index matrix. Notes Intuit. Fuzzy Sets 21(2), 71–76 (2015)Google Scholar
  279. 279.
    Wan, S., Wang, F., Dong, J.: A three-phase method for group decision making with interval-valued intuitionistic fuzzy preference relations. IEEE Trans. Fuzzy Syst. 26(2), 998–1010 (2018).  https://doi.org/10.1109/TFUZZ.2017.2701324CrossRefGoogle Scholar
  280. 280.
    Wan, S.-P.: Multi-attribute decision making method based on interval-valued intuitionistic trapezoidal fuzzy number. Kongzhi yu Juece/Control Decis. 26(6), 857-860+866 (2011)Google Scholar
  281. 281.
    Wang, Z., Li, K.W., Xu, J.: A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information. Expert Syst. Appl. 38(10), 12462–12469MathSciNetCrossRefGoogle Scholar
  282. 282.
    Wang, Z.J., Li, K.W.: An interval valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives. Expert Syst. Appl. 39(18), 13509–13516 (2012)CrossRefGoogle Scholar
  283. 283.
    Wang, J.-Q., Li, K.-J.; Zhang, H.-Y.U.: Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function. Knowl.-Based Syst. 27, 119–125 (2012)CrossRefGoogle Scholar
  284. 284.
    Wang, W., Liu, X., Qin, Y.: Interval valued intuitionistic fuzzy aggregation operators. J. Syst. Eng. Electron. 23(4), 574–580 (2012)CrossRefGoogle Scholar
  285. 285.
    Wang, Q., Sun, H. Interval-Valued intuitionistic fuzzy einstein geometric choquet integral operator and its application to multiattribute group decision-making. Math. Probl. Eng. 2018, Art. no. 9364987 (2018).  https://doi.org/10.1155/2018/9364987MathSciNetGoogle Scholar
  286. 286.
    Wang, J.Q., Li, K.J., Zhang, H.Y.: Interval valued intuitionistic fuzzy multi criteria decision making approach based on prospect score function. Knowl. Based Syst. 27, 119–125 (2012)CrossRefGoogle Scholar
  287. 287.
    Wang, P., Xu, X., Wang, J., Cai, C.: Some new operation rules and a new ranking method for interval-valued intuitionistic linguistic numbers. J. Intell. Fuzzy Syst. 32(1), 1069–1078 (2017).  https://doi.org/10.3233/JIFS-16644CrossRefzbMATHGoogle Scholar
  288. 288.
    Wang, P., Xu, X., Wang, J., Cai, C.: Interval-valued intuitionistic linguistic multi-criteria group decision-making method based on the interval 2-tuple linguistic information. J. Intell. Fuzzy Syst. 33(2), 985–994 (2017).  https://doi.org/10.3233/JIFS-162291CrossRefzbMATHGoogle Scholar
  289. 289.
    Wei, G.-W., Wang, H.-J., Lin, R.: Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision-making with incomplete weight information. Knowl. Inf. Syst. 26(2), 337–349CrossRefGoogle Scholar
  290. 290.
    Wei, C.-P., Wang, P., Zhang, Y.-Z.: Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Inf. Sci. 181(19), 4273–4286MathSciNetzbMATHCrossRefGoogle Scholar
  291. 291.
    Wei, G., Zhao, X.: An approach to multiple attribute decision making with combined weight information in interval-valued intuitionistic fuzzy environment. Control Cybern. 41(1), 97–112 (2012)Google Scholar
  292. 292.
    Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2005)Google Scholar
  293. 293.
    Wu, J., Chiclana, F.: Non dominance and attitudinal prioritisation methods for intuitionistic and interval valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39(18), 13409–13416 (2012)CrossRefGoogle Scholar
  294. 294.
    Wu, L., Wei, G., Gao, H., Wei, Y.: Some interval-valued intuitionistic fuzzy Dombi Hamy mean operators and their application for evaluating the elderly tourism service quality in tourism destination. Mathematics 6(12), Art. no. 294 (2018).  https://doi.org/10.3390/math6120294CrossRefGoogle Scholar
  295. 295.
    Wu, Y., Yu, D.: Evaluation of sustainable development for research oriented universities based on interval valued intuitionistic fuzzy set. Dongnan Daxue Xuebao (Ziran Kexue Ban)/J. Southeast Univ. (Natural Science Edition), 42(4), 790–796 (2012)Google Scholar
  296. 296.
    Xian, S., Dong, Y., Liu, Y., Jing, N.: A novel approach for linguistic group decision making based on generalized interval-valued intuitionistic fuzzy linguistic induced hybrid operator and TOPSIS. Int. J. Intell. Syst. 33(2), 288–314 (2018).  https://doi.org/10.1002/int.21931CrossRefGoogle Scholar
  297. 297.
    Xu, K., Zhou, J., Gu, R., Qin, H.: Approach for aggregating interval-valued intuitionistic fuzzy information and its application to reservoir operation. Expert Syst. Appl. 38(7), 9032–9035CrossRefGoogle Scholar
  298. 298.
    Xu, G.-L.: A consensus reaching model with minimum adjustments in interval-valued intuitionistic MAGDM. Math. Probl. Eng. 2018, art. no. 9070813 (2018).  https://doi.org/10.1155/2018/9070813MathSciNetGoogle Scholar
  299. 299.
    Xu, Z.: Methods for aggregation interval-valued intuitionistic fuzzy information and their Application to decision making. Control Decis. 22(2), 215–219 (2007)Google Scholar
  300. 300.
    Xu, Z.: A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Inf. Sci. 180(1), 181–190 (2010)zbMATHCrossRefGoogle Scholar
  301. 301.
    Xu, Z., Cai, X.: Incomplete interval-valued intuitionistic fuzzy preference relations. Int. J. Gen. Syst. 38(8), 871–886 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  302. 302.
    Xu, G., Duan, X., Lü, H.: Target priority determination methods by interval-valued intuitionistic fuzzy sets with unknown attribute weights. J. Shanghai Jiaotong Univ. (Science) 22(5), 624–632 (2017).  https://doi.org/10.1007/s12204-017-1880-yCrossRefGoogle Scholar
  303. 303.
    Yang, Y., Liang, C., Ji, S.: Comments on “Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets” by Ridvan Sahin. Soft Comput. 21(11), 3033–3035 (2017).  https://doi.org/10.1007/s00500-015-1988-7CrossRefzbMATHGoogle Scholar
  304. 304.
    Yao, Y., Zhong, N., Zhao, Y.: A conceptual framework of data mining, In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Data Mining: Foundations and Practice, pp. 501–515. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  305. 305.
    Ye, D., Liang, D., Hu, P.: Three-way decisions with interval-valued intuitionistic fuzzy decision-theoretic rough sets in group decision-making. Symmetry 10(7), art. no. 281 (2018).  https://doi.org/10.3390/sym10070281CrossRefGoogle Scholar
  306. 306.
    Ye, J.: Generalized Dice measures for multiple attribute decision making under intuitionistic and interval-valued intuitionistic fuzzy environments. Neural Comput. Appl. 30(12), 3623–3632 (2018).  https://doi.org/10.1007/s00521-017-2947-2CrossRefGoogle Scholar
  307. 307.
    Ye, J.: Multicriteria decision making method using the Dice similarity measure based on the reduct intuitionistic fuzzy sets of interval valued intuitionistic fuzzy sets. Appl. Math. Model. 36(9), 4466–4472 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  308. 308.
    Ye, J.: Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Syst. Appl. 36(3), 6899–6902 (2009)CrossRefGoogle Scholar
  309. 309.
    Ye, F.: An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst. Appl. 37(10), 7050–7055 (2010)CrossRefGoogle Scholar
  310. 310.
    Ye, J.: Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Modell. 34(12), 3864–3870 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    Yin, S., Yang, Z., Chen, S.: Interval-valued intuitionistic fuzzy multiple attribute decision making based on the improved fuzzy entropy. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 40(5), 1079–1084 (2018).  https://doi.org/10.3969/j.issn.1001-506X.2018.05.18
  312. 312.
    Yu, G., Li, D., Qiu, J.: Interval-Valued intuitionistic fuzzy multi-attribute decision making based on satisfactory degree. Theoretical and Practical Advancements for Fuzzy System Integration, vol. 49, p. 23 (2017).  https://doi.org/10.4018/978-1-5225-1848-8.ch003
  313. 313.
    Yu, D., Wu, Y.: Interval-valued intuitionistic fuzzy Heronian mean operators and their application in multi-criteria decision making. Afr. J. Bus. Manag. 6(11), 4158–4168 (2012)Google Scholar
  314. 314.
    Yu, D., Wu, Y., Lu, T.: Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl.-Based Syst. 30, 57–66 (2012)CrossRefGoogle Scholar
  315. 315.
    Yu, G., Li, D., Qiu, J., Ye, Y.: Application of satisfactory degree to interval-valued intuitionistic fuzzy multi-attribute decision making. J. Intell. Fuzzy Syst. 32(1), 1019–1028 (2017).  https://doi.org/10.3233/JIFS-16557CrossRefzbMATHGoogle Scholar
  316. 316.
    Yu, L., Wang, L., Bao, Y.: Technical attributes ratings in fuzzy QFD by integrating interval-valued intuitionistic fuzzy sets and Choquet integral. Soft Comput. 22(6), 2015–2024 (2018).  https://doi.org/10.1007/s00500-016-2464-8CrossRefzbMATHGoogle Scholar
  317. 317.
    Yue, Z.: Deriving decision maker’s weights based on distance measure for interval-valued intuitionistic fuzzy group decision making. Expert Syst. Appl. 38(9), 11665–11670CrossRefGoogle Scholar
  318. 318.
    Yue, Z. An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making. Expert Syst. Appl. 38 (5), 6333–6338CrossRefGoogle Scholar
  319. 319.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  320. 320.
    Zaharieva, B., Doukovska, L., Ribagin, S., Mihalicova, A., Radeva, I.: Intercriteria analysis of Behterev’s Kinesitherapy program. Notes on Intuit. Fuzzy Sets 23(3), 69–80 (2017)Google Scholar
  321. 321.
    Zaharieva, B., Doukovska, L., Ribagin, S., Radeva, I.: InterCriteria approach to Behterev’s disease analysis. Notes Intuit. Fuzzy Sets 23(2), 119–127 (2017)Google Scholar
  322. 322.
    Zeng, W., Zhao, Y.: Approximate, reasoning of interval valued fuzzy sets based on interval valued similarity measure set: ICIC Express Letters. Part B: Appl. 3(4), 725–732 (2012)Google Scholar
  323. 323.
    Zhang, Y.J., Ma, P.J., Su, X.H., Zhang, C.P.: Entropy on interval-valued intuitionistic fuzzy sets and its application in multi-attribute decision making. In: Fusion 2011–14th International Conference on Information Fusion, art. no. 5977465Google Scholar
  324. 324.
    Zhang, Y.J., Ma, P.J., Su, X.H., Zhang, C.P.: Multi attribute decision making with uncertain attribute weight information in the framework of interval valued intuitionistic fuzzy set. Zidonghua Xuebao/Acta Automatica Sinica 38(2), 220–228 (2012)MathSciNetzbMATHGoogle Scholar
  325. 325.
    Zhang, J.L., Qi, X.W.: Induced interval valued intuitionistic fuzzy hybrid aggregation operators with TOPSIS order inducing variables. J. Appl. Math. 2012, Art. no. 245732 (2012)Google Scholar
  326. 326.
    Zhang, Q., Yao, H., Zhang, Z.: Some similarity measures of interval-valued intuitionistic fuzzy sets and application to pattern recognition. Appl. Mech. Mater. 44–47, 3888–3892CrossRefGoogle Scholar
  327. 327.
    Zhang, Q.-sh., Jiang, S., Jia, B. et al.: Some information measures for interval-valued intuitionistic fuzzy sets. Inf. Sci. 180(24), 5130–5145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  328. 328.
    Zhang, Z.: Approaches to group decision making based on interval-valued intuitionistic multiplicative preference relations. Neural Comput. Appl. 28(8), 2105–2145 (2017).  https://doi.org/10.1007/s00521-016-2183-1CrossRefGoogle Scholar
  329. 329.
    Zhang, Q., Jiang, S.: Relationships between entropy and similarity measure of interval-valued intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(11), 1121–1140 (2010)zbMATHGoogle Scholar
  330. 330.
    Zhang, H., Yu, L.: MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets. Knowl.-Based Syst. 30, 115–120 (2012)CrossRefGoogle Scholar
  331. 331.
    Zhang, Z., Hu, Y., Ma, C., Xu, J., Yuan, S., Chen, Z.: Incentive-punitive risk function with interval valued intuitionistic fuzzy information for outsourced software project risk assessment. J. Intell. Fuzzy Syst. 32(5), 3749–3760 (2017).  https://doi.org/10.3233/JIFS-169307CrossRefzbMATHGoogle Scholar
  332. 332.
    Zhao, H., Ni, M., Liu, H. A class of new interval valued intuitionistic fuzzy distance measures and their applications in discriminant analysis. Appl. Mech. Mater. 182183, 1743–1745 (2012)CrossRefGoogle Scholar
  333. 333.
    Zoteva D., Roeva, O., Delkov, A., Tsakov, H.: Intercriteria analysis of forest fire risk. In: Proceedings of the 4th International Conference on Numerical and Symbolic Computation—Developments and Applications (SYMCOMP 2019), pp. 215–229 (2019)Google Scholar
  334. 334.
    Zoteva, D., Krawczak, M.: Generalized Nets as a Tool for the Modelling of Data Mining Processes. A Survey. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, vol. 13, pp. 1–60 (2017)Google Scholar
  335. 335.
    Zoteva, D., Roeva, O.: InterCriteria analysis results based on different number of objects. Notes Intuit. Fuzzy Sets 24(1), 110–119 (2018)CrossRefGoogle Scholar
  336. 336.
    Zou, P., Liu, Y.: Model for evaluating the security of wireless sensor network in interval valued intuitionistic fuzzy environment. Int. J. Adv. Comput. Technol. 4(4), 254–260 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations