Advertisement

Operators over IVIFSs

  • Krassimir T. AtanassovEmail author
Chapter
  • 121 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 388)

Abstract

In this chapter, we discuss modal (of two types), level (of two types) and topological operators, defined over IVIFSs and study some of their basic properties. We prove only these assertions that do not have analogues in the IFS-case. The proofs of the remaining assertions are similar to the proofs, given, e.g., in [4, 6].

References

  1. 1.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from first type. Ann. “Inf.” Sect. Union Sci. Bulg. 8, 1–17 (2015/2016)Google Scholar
  2. 2.
    Angelova, N., Stoenchev, M., Todorov, V.: Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuit. Fuzzy Sets Gen. Nets 13, 143–170 (2017)zbMATHGoogle Scholar
  3. 3.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 23(5), 29–41 (2017)Google Scholar
  4. 4.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Atanassov, K.: The most general form of one type of intuitionistic fuzzy modal operators. Part 2. In: Kacprzyk, J., Atanassov, K. (eds.) Proceedings of the Twelfth International Conference on Intuitionistic Fuzzy Sets, Sofia, vol. 1. Notes on Intuitionistic Fuzzy Sets, vol. 14, Issue 1, pp. 27–32. Accessed 17–18 May 2008Google Scholar
  6. 6.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  7. 7.
    Atanassov, K.: On the two most extended modal types of operators defined over interval-valued intuitionistic fuzzy sets. Ann. Fuzzy Math. Inf. 16(1), 1–12 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Atanassov, K.: Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 1. Notes Intuit. Fuzzy Sets 24(2), 8–17.  https://doi.org/10.7546/nifs.2018.24.2.8-17 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Atanassov, K.: Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 2. Notes Intuit. Fuzzy Sets 24(3), 1–10.  https://doi.org/10.7546/nifs.2018.24.3.1-10 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Atanassov, K.: On the most extended modal operator of first type over interval-valued intuitionistic fuzzy sets. Mathematics 6, 123.  https://doi.org/10.3390/math6070123 (2018)CrossRefGoogle Scholar
  11. 11.
    Atanassov, K.: On the most extended interval valued intuitionistic fuzzy modal operators from both types. Notes Intuit. Fuzzy Sets 25(2), 1–14 (2019).  https://doi.org/10.7546/nifs.2019.25.2.1-14MathSciNetCrossRefGoogle Scholar
  12. 12.
    Atanassov, K.: Four interval valued intuitionistic fuzzy modal-level operators. Notes Intuit. Fuzzy Sets 25, 3 2019 (In Press)Google Scholar
  13. 13.
    Atanassov K., Ban, A. : On an operator over intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, Tome 53(5), 39–42 (2000)Google Scholar
  14. 14.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: Shrinking operators over interval-valued intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 24, 4 (2018).  https://doi.org/10.7546/nifs.2018.24.4.20-28,20-28CrossRefGoogle Scholar
  15. 15.
    Çuvalcioǧlu, G.: Some properties of \(E_{\alpha ,\beta }\) operator. Adv. Stud. Contem. Math. 14(2), 305–310 (2007)Google Scholar
  16. 16.
    Çuvalcioǧlu, G. Expand the model operator diagram with \(Z^{\omega }_{\alpha , \beta }\). Proc. Jangjeon Math. Soci. 13(3), 403–412 (2010)Google Scholar
  17. 17.
    Kaufmann, A.: Introduction a la Theorie des Sour-Ensembles Flous. Masson, Paris (1977)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations