Advertisement

Relations and Operations over IVIFSs

  • Krassimir T. AtanassovEmail author
Chapter
  • 121 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 388)

Abstract

In this chapter, the basic definitions and properties of the relations and operations over IVIFSs will be discussed. We omit the majority of the proofs below, which are, in general, analogous to the proofs from [4, 5] for IFSs.

References

  1. 1.
    Angelova, N., M. Stoenchev. Intuitionistic fuzzy conjunctions and disjunctions from first type. In: Annual of “Informatics” Section, Union of Scientists in Bulgaria, vol. 8, pp. 1–17 (2015/2016)Google Scholar
  2. 2.
    Angelova, N., Stoenchev, M., Todorov, V.: Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuitionistic Fuzzy Sets Gen. Nets 13, 143–170 (2017)zbMATHGoogle Scholar
  3. 3.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuitionistic Fuzzy Sets 23(5), 29–41 (2017)zbMATHGoogle Scholar
  4. 4.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Atanassov, K.: Intuitionistic Fuzzy Logics. Springer, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: Properties of the intuitionistic fuzzy implication \(\rightarrow _{188}\). Notes Intuitionistic Fuzzy Sets 23(5), 1–6 (2019)CrossRefGoogle Scholar
  8. 8.
    Atanassova, L.: On interval-valued intuitionistic fuzzy versions of L. Zadeh’s extension principle. Issues Intuitionistic Fuzzy Sets Gen. Nets 7, 13–19 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations