Interval-Valued Intuitionistic Fuzzy Sets pp 27-51 | Cite as
Relations and Operations over IVIFSs
Chapter
First Online:
- 121 Downloads
Abstract
In this chapter, the basic definitions and properties of the relations and operations over IVIFSs will be discussed. We omit the majority of the proofs below, which are, in general, analogous to the proofs from [4, 5] for IFSs.
References
- 1.Angelova, N., M. Stoenchev. Intuitionistic fuzzy conjunctions and disjunctions from first type. In: Annual of “Informatics” Section, Union of Scientists in Bulgaria, vol. 8, pp. 1–17 (2015/2016)Google Scholar
- 2.Angelova, N., Stoenchev, M., Todorov, V.: Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuitionistic Fuzzy Sets Gen. Nets 13, 143–170 (2017)zbMATHGoogle Scholar
- 3.Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuitionistic Fuzzy Sets 23(5), 29–41 (2017)zbMATHGoogle Scholar
- 4.Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 5.Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
- 6.Atanassov, K.: Intuitionistic Fuzzy Logics. Springer, Cham (2017)CrossRefGoogle Scholar
- 7.Atanassov, K., Szmidt, E., Kacprzyk, J.: Properties of the intuitionistic fuzzy implication \(\rightarrow _{188}\). Notes Intuitionistic Fuzzy Sets 23(5), 1–6 (2019)CrossRefGoogle Scholar
- 8.Atanassova, L.: On interval-valued intuitionistic fuzzy versions of L. Zadeh’s extension principle. Issues Intuitionistic Fuzzy Sets Gen. Nets 7, 13–19 (2008)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2020