Advertisement

On Interval Valued Intuitionistic Fuzzy Sets

  • Krassimir T. AtanassovEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 388)

Abstract

In this chapter, the basic definitions of the concepts of Interval Valued Fuzzy Sets (IVFSs) and Interval Valued Intuitionistic Fuzzy Sets (IVIFSs) will be introduced. The relation between IFSs and IVFSs will be discussed.

References

  1. 1.
    Atanassov, K.: Review and new results on intuitionistic fuzzy sets. Preprint IM-MFAIS-1-88, Sofia (1988)Google Scholar
  2. 2.
    Atanassov, K.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Atanassov, K.: Remark on a property of the intuitionistic fuzzy interpretation triangle. Notes Intuitionistic Fuzzy Sets 8(1), 34–36. http://ifigenia.org/wiki/issue:nifs/8/1/34-36 (2002)
  5. 5.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Atanassov, K.: Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets. Adv. Stud. Contemp. Math. 28(2), 167–176 (2018)zbMATHGoogle Scholar
  7. 7.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Atanassova, V., Angelova, N.: Representation of Interval-Valued Intuitionistic Fuzzy Data by Radar Charts. In: Atanassov, K.T., Kacprzyk, J., at al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross fertilization, New Models and Applications, Springer, Cham (2019) (in press)Google Scholar
  9. 9.
    Dworniczak, P.: Further remarks about the unconscientious experts’ evaluations in the intuitionistic fuzzy environment. Notes Intuitionistic Fuzzy Sets 19(1), 27–31 (2013)Google Scholar
  10. 10.
    Gargov, G.: Knowledge, uncertainty and ignorance in logic: bilattices and beyond. J. Appl. Non-Classical Logics 9(2–3), 195–283 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Georgiev, P., Atanassov, K.: Geometrical interpretations of the interval valued intuitionistic fuzzy sets. Notes Intuitionistic Fuzzy Sets 2(2), 1–10 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gorzalczany, M.: Interval-valued fuzzy fuzzy inference method - some basic properties. Fuzzy Sets Syst. 31(2), 243–251 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaufmann, A.: Introduction a la Theorie des Sour-Ensembles Flous. Masson, Paris (1977)zbMATHGoogle Scholar
  14. 14.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Syst. 114(3), 505–518 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Turksen, I.: Interval valued fuzzy sets based normal forms. Fuzzy Sets and Syst. 20(2), 191–210 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Vassilev, P.: On reassessment of expert evaluations in the case of intuitionistic fuzzines. Adv. Stud. Contemp. Math. 20(4), 569–574 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations