On Brouwer’s Intuitionism and Intuitionistic Fuzziness

  • Krassimir T. AtanassovEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 388)


Aristotle made the first steps to the establishment of the mathematical logic by giving ideas for the concepts “sentence” and “predicate”; the fundamental logical functions as conjunction, disjunction and negation, the logical quantifiers, modal operators, and many others. He was the first who justified the need for axioms and presented the first examples of such. For 23 centuries one of his proposed axioms—the Law of Excluded Middle (LEM)—has been among the main tools for proving mathematical assertions.


  1. 1.
    Atanassov, K. Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, Issue 1, pp. 87–96 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atanassov K.: Geometrical interpretation of the elements of the intuitionistic fuzzy objects, Preprint IM-MFAIS-1-89, Sofia (1989). Reprinted: Int. J. Bioautom. 20(S1), S27–S42 (2016)Google Scholar
  4. 4.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    van Atten, M.: On Brouwer. Wadsworth, Behnout (2004)zbMATHGoogle Scholar
  7. 7.
    Benacerraf, P., Putnam, H. (eds.): Philosophy of Mathematics: Selected Readings, 2nd edn. Cambridge University Press, Cambridge (1983)Google Scholar
  8. 8.
    Brouwer, L.E.J.: Intuïtionisme en Formalisme. Clausen, Amsterdam (1912)zbMATHGoogle Scholar
  9. 9.
    Brouwer, L.E.J.: In: Heyting, A. (ed.) Collected Works Vol. 1: Philosophy and Foundations of Mathematics. North Holland, Amsterdam (1975)Google Scholar
  10. 10.
    Brouwer, L.E.J.: In: van Dalen, D. (ed.) Brouwer’s Cambridge Lectures on Intuitionism. Cambridge University Press, Cambridge (1981)Google Scholar
  11. 11.
    Buhaescu, T.: On the convexity of intuitionistic fuzzy sets, pp. 137–144. Approximation and Convexity, Cluj-Napoca, Itinerant Seminar on Functional Equations (1988)Google Scholar
  12. 12.
    Buhaescu, T.: Some observations on intuitionistic fuzzy rerelations, pp. 111–118. Approximation and Convexity, Cluj-Napoca, Itinerant Seminar on Functional Equations (1989)Google Scholar
  13. 13.
    Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kaufmann, A.: Introduction a la Theorie des Sour-Ensembles Flous. Masson, Paris (1977)Google Scholar
  15. 15.
    Pawlak, Z.: Rough functions, ICS, PAS Report 467 (1981)Google Scholar
  16. 16.
    Pawlak, Z.: Rough sets, ICS, PAS Report 431 (1981)Google Scholar
  17. 17.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  18. 18.
    Zadeh, L.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. American Elsevier Publ. Co., New York (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations