Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 666 Accesses

Abstract

For the sake of easy reference and for the reader’s convenience we shall give in this chapter the basic properties of the modulus of a curve family. The proofs of several well-known results are omitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., and Stegun, I. A., Eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

    Google Scholar 

  2. Ahlfors, L. V.Conformal invariants: topics in geometric function theory. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics.

    Google Scholar 

  3. Ahlfors, L. V., and Beurling, A. Conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101–129.

    Article  MathSciNet  Google Scholar 

  4. Anderson, G. D., Qiu, S.-L., Vamanamurthy, M. K., and Vuorinen, M. K. Generalized elliptic integrals and modular equations. Pacific J. Math. 192, 1 (2000), 1–37.

    Article  MathSciNet  Google Scholar 

  5. Anderson, G. D., Vamanamurthy, M. K., and Vuorinen, M. K. Special functions of quasiconformal theory. Exposition. Math. 7, 2 (1989), 97–136.

    MathSciNet  MATH  Google Scholar 

  6. Anderson, G. D., Vamanamurthy, M. K., and Vuorinen, M. K.Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD), A Wiley-Interscience Publication.

    Google Scholar 

  7. Anderson, G. D., Vuorinen, M. K., and Zhang, X. Topics in special functions III. In Analytic number theory, approximation theory, and special functions. Springer, New York, 2014, pp. 297–345.

    Google Scholar 

  8. Andreian Cazacu, C. Foundations of quasiconformal mappings. In Handbook of complex analysis: geometric function theory. Vol. 2. Elsevier Sci. B. V., Amsterdam, 2005, pp. 687–753.

    Google Scholar 

  9. Baernstein II, A. Ahlfors and conformal invariants. Ann. Acad. Sci. Fenn. Ser. A I Math. 13, 3 (1988), 289–312.

    Article  MathSciNet  Google Scholar 

  10. Baricz, A.Generalized Bessel functions of the first kind, vol. 1994 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010.

    Google Scholar 

  11. Beebe, N. H. F.The mathematical-function computation handbook. Springer, Cham, 2017. Programming using the MathCW portable software library.

    Google Scholar 

  12. Berger, M.Geometry. I, II. Universitext. Springer-Verlag, Berlin, 1987. Translated from the French by M. Cole and S. Levy.

    Google Scholar 

  13. Berndt, B. C.Ramanujan’s notebooks. Part III. Springer-Verlag, New York, 1991.

    Google Scholar 

  14. Betsakos, D., Samuelsson, K., and Vuorinen, M. K. The computation of capacity of planar condensers. Publ. Inst. Math. (Beograd) (N.S.) 75(89) (2004), 233–252.

    Google Scholar 

  15. Borwein, J. M., and Borwein, P. B.Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts, 4. John Wiley & Sons, Inc., New York, 1998. A study in analytic number theory and computational complexity, Reprint of the 1987 original, A Wiley-Interscience Publication.

    Google Scholar 

  16. Byrd, P. F., and Friedman, M. D.Handbook of elliptic integrals for engineers and physicists. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd LXVII. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.

    Google Scholar 

  17. Caraman, P.n-dimensional quasiconformal (QCf) mappings. Editura Academiei Române, Bucharest; Abacus Press, Tunbridge Wells; Haessner Publishing, Inc., Newfoundland, N.J., 1974. Revised, enlarged and translated from the Romanian by the author.

    Google Scholar 

  18. Cooper, S.Ramanujan’s Theta Functions. Springer International Publishing, 2017.

    Google Scholar 

  19. Coxeter, H. S. M., and Greitzer, S. L.Geometry revisited, vol. 19 of New Mathematical Library. Random House, Inc., New York, 1967.

    Google Scholar 

  20. Fuglede, B. Extremal length and functional completion. Acta Math. 98 (1957), 171–219.

    Article  MathSciNet  Google Scholar 

  21. Garnett, J. B., and Marshall, D. E.Harmonic measure, vol. 2 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008. Reprint of the 2005 original.

    Google Scholar 

  22. Gehring, F. W. Symmetrization of rings in space. Trans. Amer. Math. Soc. 101 (1961), 499–519.

    Article  MathSciNet  Google Scholar 

  23. Gehring, F. W. Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 353–393.

    Article  MathSciNet  Google Scholar 

  24. Gehring, F. W. A remark on domains quasiconformally equivalent to a ball. Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 147–155.

    Article  MathSciNet  Google Scholar 

  25. Gehring, F. W. Topics in quasiconformal mappings. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (1987), Amer. Math. Soc., Providence, RI, pp. 62–80.

    Google Scholar 

  26. Gehring, F. W., Martin, G. J., and Palka, B. P.An introduction to the theory of higher-dimensional quasiconformal mappings, vol. 216 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2017.

    Google Scholar 

  27. Gehring, F. W., and Väisälä, J. The coefficients of quasiconformality of domains in space. Acta Math. 114 (1965), 1–70.

    Article  MathSciNet  Google Scholar 

  28. Grötzsch, H. Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes. Ber. Verh. Sächs. Akad. Wiss. Leipzig 80 (1928), 503–507.

    MATH  Google Scholar 

  29. Hakula, H., Rasila, A., and Vuorinen, M. K. On moduli of rings and quadrilaterals: algorithms and experiments. SIAM J. Sci. Comput. 33, 1 (2011), 279–302.

    Article  MathSciNet  Google Scholar 

  30. Heikkala, V. Inequalities for conformal capacity, modulus, and conformal invariants. Ann. Acad. Sci. Fenn. Math. Diss., 132 (2002), 62.

    MathSciNet  MATH  Google Scholar 

  31. Jacobi, C. G. J. Fundamenta nova theoriae functionum ellipticarum. Regiomonti, Sumptibus Fratrum Bornträger 1 (1829), Chelsea, New York, 1969 (reprint of 1881–91 edition).

    Google Scholar 

  32. Jenkins, J. A.Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie, Corrected ed. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965.

    Google Scholar 

  33. Jenkins, J. A. The method of the extremal metric. In The Bieberbach conjecture (West Lafayette, Ind., 1985), vol. 21 of Math. Surveys Monogr. Amer. Math. Soc., Providence, RI, 1986, pp. 95–104.

    Google Scholar 

  34. Jenkins, J. A. The method of the extremal metric. In Handbook of complex analysis: geometric function theory, Vol. 1. North-Holland, Amsterdam, 2002, pp. 393–456.

    Google Scholar 

  35. Kühnau, R. Bibliography of geometric function theory. In Handbook of complex analysis: geometric function theory. Vol. 2. Elsevier Sci. B. V., Amsterdam, 2005, pp. 809–828.

    Google Scholar 

  36. Kuzmina, G. V. Moduli of families of curves and quadratic differentials. Proc. Steklov Inst. Math., 1 (1982), vii+231. A translation of Trudy Mat. Inst. Steklov. 139(1980).

    Google Scholar 

  37. Kuzmina, G. V. Geometric function theory. Jenkins results. The method of modules of curve families. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 445, Analiticheskaya Teoriya Chisel i Teoriya Funktsiı̆. 31 (2016), 181–249. Reprinted in J. Math. Sci. (N.Y.) 226 (2017), no. 5, 645–689.

    Google Scholar 

  38. Lehto, O., and Virtanen, K. I.Quasiconformal mappings in the plane, Second ed. Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126.

    Google Scholar 

  39. Loewner, C. On the conformal capacity in space. J. Math. Mech. 8 (1959), 411–414.

    MathSciNet  MATH  Google Scholar 

  40. Martio, O., Rickman, S., and Väisälä, J. Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 465 (1970), 13.

    MathSciNet  MATH  Google Scholar 

  41. Martio, O., Ryazanov, V. I., Srebro, U., and Yakubov, E.Moduli in modern mapping theory. Springer Monographs in Mathematics. Springer, New York, 2009.

    Google Scholar 

  42. Martio, O., and Sarvas, J. Density conditions in the n-capacity. Indiana Univ. Math. J. 26, 4 (1977), 761–776.

    Article  MathSciNet  Google Scholar 

  43. Mattila, P. Integration in a space of measures. Ann. Acad. Sci. Fenn. Ser. A I, 555 (1973), 37.

    MathSciNet  MATH  Google Scholar 

  44. Mazya, V. G.Prostranstva S. L. Soboleva. Leningrad. Univ., Leningrad, 1985.

    Google Scholar 

  45. Mostow, G. D. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104.

    Article  MathSciNet  Google Scholar 

  46. Näkki, R. Extension of Loewner’s capacity theorem. Trans. Amer. Math. Soc. 180 (1973), 229–236.

    MathSciNet  MATH  Google Scholar 

  47. Ohtsuka, M.Dirichlet problem, extremal length, and prime ends. Van Nostrand, Reinhold, 1970.

    MATH  Google Scholar 

  48. Ohtsuka, M.Extremal length and precise functions. GAKUTO International Series. Mathematical Sciences and Applications, 19. Gakkōtosho Co., Ltd., Tokyo, 2003. With a preface by Fumi-Yuki Maeda.

    Google Scholar 

  49. Qiu, S.-L., Ma, X.-Y., and Chu, Y.-M. Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474, 1 (2019), 1306–1337.

    Article  MathSciNet  Google Scholar 

  50. Qiu, S.-L., and Vuorinen, M. K. Some properties of the gamma and psi functions, with applications. Math. Comp. 74, 250 (2005), 723–742.

    Article  MathSciNet  Google Scholar 

  51. Reshetnyak, Y. G.Prostranstvennye otobrazheniya s ogranichennym iskazheniem. “Nauka” Sibirsk. Otdel., Novosibirsk, 1982.

    Google Scholar 

  52. Rodin, B. The method of extremal length. Bull. Amer. Math. Soc. 80 (1974), 587–606.

    Article  MathSciNet  Google Scholar 

  53. Roy, R.Elliptic and Modular Functions from Gauss to Dedekind to Hecke. Cambridge University Press, 2017.

    Google Scholar 

  54. Sychev, A. V.Moduli i prostranstvennye kvazikonformnye otobrazheniya [Moduli and n-dimensional quasiconformal mappings]. “Nauka” Sibirsk. Otdel., Novosibirsk, 1983.

    Google Scholar 

  55. Trott, M.The Mathematica guidebook for symbolics. Springer, New York, 2006. With 1 DVD-ROM (Windows, Macintosh and UNIX).

    Google Scholar 

  56. Väisälä, J. On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A I No. 298 (1961), 36.

    MathSciNet  MATH  Google Scholar 

  57. Väisälä, J. On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A I No. 322 (1962), 12.

    MathSciNet  MATH  Google Scholar 

  58. Väisälä, J.Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971.

    Google Scholar 

  59. Väisälä, J. A survey of quasiregular maps in \({\mathbb {R}}^{n}\). In Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (1980), Acad. Sci. Fennica, Helsinki, pp. 685–691.

    Google Scholar 

  60. Vuorinen, M. K. On the existence of angular limits of n-dimensional quasiconformal mappings. Ark. Mat. 18, 2 (1980), 157–180.

    Article  MathSciNet  Google Scholar 

  61. Vuorinen, M. K. Some inequalities for the moduli of curve families. Michigan Math. J. 30, 3 (1983), 369–380.

    Article  MathSciNet  Google Scholar 

  62. Vuorinen, M. K. Conformal invariants and quasiregular mappings. J. Analyse Math. 45 (1985), 69–115.

    Article  MathSciNet  Google Scholar 

  63. Vuorinen, M. K. On Teichmüller’s modulus problem in \({\mathbb R}^n\). Math. Scand. 63, 2 (1988), 315–333.

    Google Scholar 

  64. Ziemer, W. P. Extremal length and p-capacity. Michigan Math. J. 16 (1969), 43–51.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariri, P., Klén, R., Vuorinen, M. (2020). The Modulus of a Curve Family. In: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-32068-3_7

Download citation

Publish with us

Policies and ethics