Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 677 Accesses

Abstract

In the preceding chapters we have studied some properties of the conformal invariant M( Δ(E, F;G)). In this chapter we shall introduce two other conformal invariants, the modulus metric \(\mu _{G}^{}(x,y)\) and its “dual” quantity \(\lambda _{G}^{}(x,y)\), where G is a domain in \(\overline {\mathbb {R}}^n\) and x, y ∈ G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L. V., and Beurling, A. Conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101–129.

    Article  MathSciNet  Google Scholar 

  2. Anderson, G. D., Vamanamurthy, M. K., and Vuorinen, M. K. Special functions of quasiconformal theory. Exposition. Math. 7, 2 (1989), 97–136.

    MathSciNet  MATH  Google Scholar 

  3. Anderson, G. D., Vamanamurthy, M. K., and Vuorinen, M. K.Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD), A Wiley-Interscience Publication.

    Google Scholar 

  4. Aseev, V. V., and Sychev, A. V. Sets that are removable for quasiconformal mappings in space. Sibirsk. Mat. Ž. 15 (1974), 1213–1227, 1429.

    Google Scholar 

  5. Cheng, T., and Yang, S. Extremal function for capacity and estimates of QED constants in ℝn. Adv. Math. 306 (2017), 929–957.

    Article  MathSciNet  Google Scholar 

  6. Emelyanov, E. G.,andKuzmina, G. V. The Vuorinen problem on the maximum of the conformal module. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 404, Analiticheskaya Teoriya Chisel i Teoriya Funktsiı̆. 27 (2012), 120–134, 261.

    Google Scholar 

  7. Ferrand, J. A characterization of quasiconformal mappings by the behaviour of a function of three points. In Complex analysis, Joensuu 1987, vol. 1351 of Lecture Notes in Math. Springer, Berlin, 1988, pp. 110–123.

    Google Scholar 

  8. Ferrand, J. Conformal capacities and extremal metrics. Pacific J. Math. 180, 1 (1997), 41–49.

    Article  MathSciNet  Google Scholar 

  9. Ferrand, J., Martin, G. J., and Vuorinen, M. K. Lipschitz conditions in conformally invariant metrics. J. Analyse Math. 56 (1991), 187–210.

    Article  MathSciNet  Google Scholar 

  10. Gál, I. S. Conformally invariant metrics and uniform structures. I. II. Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 218–231, 232–244.

    Article  Google Scholar 

  11. Gehring, F. W., and Hag, K.The ubiquitous quasidisk, vol. 184 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2012. With contributions by Ole Jacob Broch.

    Google Scholar 

  12. Gehring, F. W., and Martio, O. Quasiextremal distance domains and extension of quasiconformal mappings. J. Analyse Math. 45 (1985), 181–206.

    Article  MathSciNet  Google Scholar 

  13. Heikkala, V. Inequalities for conformal capacity, modulus, and conformal invariants. Ann. Acad. Sci. Fenn. Math. Diss., 132 (2002), 62.

    MathSciNet  MATH  Google Scholar 

  14. Heikkala, V., and Vuorinen, M. K. Teichmüller’s extremal ring problem. Math. Z. 254, 3 (2006), 509–529.

    Article  MathSciNet  Google Scholar 

  15. Jenkins, J. A. On metrics defined by modules. Pacific J. Math. 167, 2 (1995), 289–292.

    Article  MathSciNet  Google Scholar 

  16. Kuusalo, T. Generalized conformal capacity and quasiconformal metrics. In Proceedings of the Romanian-Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings (Bracsov, 1969) (1971), Publ. House of the Acad. of the Socialist Republic of Romania, Bucharest, pp. 193–202.

    Google Scholar 

  17. Kuzmina, G. V. Moduli of families of curves and quadratic differentials. Proc. Steklov Inst. Math., 1 (1982), vii+231. A translation of Trudy Mat. Inst. Steklov. 139(1980).

    Google Scholar 

  18. Kuzmina, G. V. Geometric function theory. Jenkins results. The method of modules of curve families. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 445, Analiticheskaya Teoriya Chisel i Teoriya Funktsiı̆. 31 (2016), 181–249. Reprinted in J. Math. Sci. (N.Y.) 226 (2017), no. 5, 645–689.

    Google Scholar 

  19. Lehtinen, M., and Vuorinen, M. K. On Teichmüller’s modulus problem in the plane. Rev. Roumaine Math. Pures Appl. 33, 1–2 (1988), 97–106.

    MathSciNet  MATH  Google Scholar 

  20. Lelong-Ferrand, J. Invariants conformes globaux sur les variétés riemanniennes. J. Differential Geometry 8 (1973), 487–510.

    Article  MathSciNet  Google Scholar 

  21. Martio, O., Ryazanov, V. I., Srebro, U., and Yakubov, E.Moduli in modern mapping theory. Springer Monographs in Mathematics. Springer, New York, 2009.

    Google Scholar 

  22. Prilepkina, E. G.,andAfanaseva-Grigoreva, A. S. On the conformal metric of spherical ring in n-dimensional Euclidean space. Dal′nevost. Mat. Zh. 18, 2 (2018), 233–241.

    Google Scholar 

  23. Solynin, A. Y. Moduli of doubly connected domains, and conformally invariant metrics. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196, Modul. Funktsii Kvadrat. Formy. 2 (1991), 122–131, 175.

    Google Scholar 

  24. Solynin, A. Y., and Vuorinen, M. K. Extremal problems and symmetrization for plane ring domains. Trans. Amer. Math. Soc. 348, 10 (1996), 4095–4112.

    Article  MathSciNet  Google Scholar 

  25. Teichmüller, O. Untersuchungen über konforme und quasikonforme Abbildung. Deutsche Math. 3 (1938), 621–678.

    MATH  Google Scholar 

  26. Väisälä, J. On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A I No. 322 (1962), 12.

    MathSciNet  MATH  Google Scholar 

  27. Väisälä, J. Quasi-Möbius maps. J. Analyse Math. 44 (1984/85), 218–234.

    Article  MathSciNet  Google Scholar 

  28. Vuorinen, M. K. Conformal invariants and quasiregular mappings. J. Analyse Math. 45 (1985), 69–115.

    Article  MathSciNet  Google Scholar 

  29. Vuorinen, M. K. On quasiregular mappings and domains with a complete conformal metric. Math. Z. 194, 4 (1987), 459–470.

    Article  MathSciNet  Google Scholar 

  30. Vuorinen, M. K.Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, Vol. 1319. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  31. Vuorinen, M. K. On Teichmüller’s modulus problem in \({\mathbb R}^n\). Math. Scand. 63, 2 (1988), 315–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariri, P., Klén, R., Vuorinen, M. (2020). Conformal Invariants. In: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-32068-3_10

Download citation

Publish with us

Policies and ethics