Skip to main content

Phosphorus in the Everglades and Its Effects on Oxidation-Reduction Dynamics

  • Chapter
  • First Online:

Abstract

Nutrient enrichment—particularly with respect to phosphorus—has long been a major concern in the Everglades (see Chap. 2, Volume I). This perturbation is of keen interest with respect to the Everglades mercury (Hg) problem because the biogeochemical cycling of Hg in aquatic ecosystems is intrinsically linked to trophic state through multiple pathways, including the effects of nutrient status on food web structure and dynamics, in situ particle production, and redox dynamics in surficial sediments (see Fig. 1.1, Chap. 1, this volume). As a result, decision makers charged with the responsibility of restoring the Everglades must also consider the resultant impacts of management strategies on not just trophic state dynamics, but also the linked effects of those strategies on Hg biogeochemical cycling and trophic transfer. This chapter thus reviews phosphorus enrichment in the Everglades and its effects on Hg biogeochemical cycling, including its effects on methyl mercury production related to perturbations in redox dynamics in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, the likely depth of surficial sediments actively involved in exchanging and methylating Hg is perhaps on the order of several centimeters (see Chap. 3, Volume III) while bioturbation can result in exchange depths approximating 10 cm in lacustrine and estuarine sediments for other constituents, including nutrients (Teal et al. 2008). If we assume an average sediment burial rate of 2.33 mm/year for relatively undisturbed sites in the Everglades (Craft and Richardson 1993), these values equate to sediment nutrient turnover rates as long as ~40 years.

References

  • Aldous A, McCormick P, Ferguson C, Graham S, Craft C (2005) Hydrologic regime controls soils phosphorus fluxes in restoration and undisturbed wetlands. Restor Ecol 13(2):341–347

    Article  Google Scholar 

  • Amador JA, Jones RD (1993) Nutrient limitation on microbial respiration in peat soils with different total phosphorus content. Soil Biol Biochem 25:793–801

    Article  CAS  Google Scholar 

  • Amador JA, Jones RD (1995) Carbon mineralization in pristine and phosphorus enriched peat soils of the Florida Everglades. Soil Sci 159:129–141

    Article  CAS  Google Scholar 

  • August KR (2018) Reduced soil nutrient enrichment and Typha expansion due to restoration efforts: a temporal analysis of Taylor Slough in Everglades National Park. Masters Thesis. University of Florida, Gainesville, FL

    Google Scholar 

  • Bernhardt CE, Willard DA (2009) Response of the Everglades ridge and slough landscapes to climate variability and 20th-century water management. Ecol Appl 19(7):1723–1738

    Article  PubMed  Google Scholar 

  • Browder JA, Gleason PJ, Swift DR (1994) Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. In: Davis SM, Ogden JC (eds) Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL, pp 379–418

    Google Scholar 

  • Bruland GL, Grunwald S, Osborne TZ, Reddy KR, Newman S (2006) Spatial distribution of soil properties in water conservation area 3 of the Everglades. Soil Sci Soc Am J 70:1662–1676

    Article  CAS  Google Scholar 

  • Bruland GL, Osborne TZ, Reddy KR, Grunwald S, Newman S, DeBusk WF (2007) Recent changes in soil total phosphorus in the Everglades: water conservation area 3A. Environ Monit Assess 129:379–395

    Article  CAS  PubMed  Google Scholar 

  • Chambers RM, Pederson KA (2006) Variation in soil phosphorus, sulfur, and iron pools among South Florida wetlands. Hydrobiologia 569:63–70

    Article  CAS  Google Scholar 

  • Chase JM (2003) Strong and weak trophic cascades along a productivity gradient. Oikos 101:187–195

    Article  Google Scholar 

  • Chen M, Ma LQ, Li YC (2000) Concentrations of P, K, Al, Fe, Mn, Cu, Zn, and As in marl soils from South Florida. Proc Soil Crop Sci Soc Fla 59:124–129

    Google Scholar 

  • Chiang C, Craft CB, Rogers DW, Richardson CJ (2000) Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquat Bot 68:61–78

    Article  CAS  Google Scholar 

  • Childers DL, Doren RF, Jones R, Noe GB, Rugge M, Scinto LJ (2003) Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. J Environ Qual 32:344–362

    Article  CAS  PubMed  Google Scholar 

  • Corstanje R, Reddy KR (2004) Response of biogeochemical indicators to a drawdown and subsequent reflood. J Env Qual 33:2357–2366

    Article  CAS  Google Scholar 

  • Corstanje R, Grunwald S, Reddy KR, Osborne TZ, Newman S (2006) Assessment of the spatial distribution of soil properties in a northern Everglades marsh. J Environ Qual 35:938–949

    Article  CAS  PubMed  Google Scholar 

  • Craft CB, Richardson CJ (1993) Peat accretion and phosphorus accumulation along a eutrophic gradient in northern Everglades. Biogeochem 22:133–156

    Article  CAS  Google Scholar 

  • Craft CB, Richardson CJ (1997) Relationships between soil nutrients and plant species composition in Everglades peatlands. J Env Qual 26:224–232

    Article  CAS  Google Scholar 

  • Craft CB, Richardson CJ (2008) Soil characteristics of the Everglades peatland. In: Richardson CJ (ed) The Everglades experiments. Springer, pp 59–74

    Google Scholar 

  • Craft CB, Vymazal J, Richardson CJ (1995) Response of Everglades plant communities to nitrogen and phosphorus additions. Wetlands 15(3):258–271

    Article  Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830

    Article  Google Scholar 

  • Daoust RJ, Childers DL (2004) Ecological effects of low level phosphorus additions on two plant communities in a neotropical freshwater wetland. Oecologia 141:672–686

    Article  PubMed  Google Scholar 

  • Davis JH (1946) The peat deposits of Florida: Florida geologic survey. Geol Bull 30:247

    Google Scholar 

  • Davis SM (1991) Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquat Bot 40:203–224

    Article  Google Scholar 

  • Davis SM (1994) Phosphorus inputs and vegetation sensitivity in the Everglades. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucy Press, Delray Beach, FL, p 826

    Chapter  Google Scholar 

  • Davis SM, Ogden JC (eds) (1994) Everglades: the ecosystem and its restoration. St. Lucy Press, Delray Beach, FL, p 826

    Google Scholar 

  • Davis SM, Childers DL, Lorenz JL, Wanless HR, Hopkins TE (2005) A conceptual ecological model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25:832–842

    Article  Google Scholar 

  • DeAngelis DL (1994) Synthesis: spatial and temporal characteristics of the environment. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL

    Google Scholar 

  • DeBusk WF, Reddy KR (1998) Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Sci Soc Am J 62:1460–1468

    Article  CAS  Google Scholar 

  • DeBusk WF, Reddy KR (2003) Nutrient and hydrology effects on soil respiration in a northern Everglades marsh. J Environ Qual 32:702–710

    Article  CAS  PubMed  Google Scholar 

  • DeBusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched Everglades marsh. Biogeochemistry 75:217–240

    Article  Google Scholar 

  • DeBusk WF, Reddy KR, Koch MS, Wang Y (1994) Spatial patterns of soil phosphorus in Everglades water conservation area 2A. Soil Sci Soc Am J 58:543–552

    Article  Google Scholar 

  • DeBusk WF, Newman S, Reddy KR (2001) Spatio-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A. J Environ Qual 30:1348–1446

    Article  Google Scholar 

  • Dettling MD, Yavitt JB, Zinder SH (2006) Control of organic carbon mineralization by alternative electron acceptors in four peatlands, Central New York State, USA. Wetlands 26(4):917–927

    Article  Google Scholar 

  • Ewe SML, Gaiser EE, Childers DL, Rivera-Monroy VH, Iwaniec D, Fourquerean J, Twilley RR (2006) Spatial and temporal patterns of aboveground net primary productivity (ANPP) in the Florida Coastal Everglades LTER (2001–2004). Hydrobiologia 569:459–474

    Article  Google Scholar 

  • Gaiser EE, Scinto LJ, Richards JH, Jayachandran K, Childers DL, Trexler JC, Jones RD (2004) Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Res 38:507–516

    Article  CAS  PubMed  Google Scholar 

  • Gaiser EE, Trexler JC, Richards JH, Childers DL, Lee D, Edwards AL, Scinto LJ, Jayachandran K, Noe GB, Jones RD (2005) Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. J Environ Qual 34:717–723

    Article  CAS  PubMed  Google Scholar 

  • Gaiser EE, Childers DL, Jones RD, Richards JH, Scinto LJ, Trexler JC (2006) Periphyton responses to eutrophication in the Florida Everglades. Cross-system patterns of structural and compositional change. Limnol Oceanogr 51:617–630

    Article  CAS  Google Scholar 

  • Gleason PJ, Stone P (1994) Age, origin, and landscape evolution of the Everglades peatland. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucy Press, Delray Beach, FL, p 826

    Google Scholar 

  • Gleason PJ, Cohen AD, Stone P, Smith WG, Brooks HK, Goodrick R, Spackman W Jr (1974) The environmental significance of Holocene sediments from the Everglades and saline tidal plains. In: Gleason PJ (ed) Environments of South Florida. Present and past. Miami Geological Society, Coral Gables, FL, pp 297–351

    Google Scholar 

  • Goldsborough LG, Robinson GGC (1996) Pattern in wetlands. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Academic Press, San Diego, CA, pp 77–117

    Chapter  Google Scholar 

  • Gottlieb A, Richards J, Gaiser E (2005) Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquat Bot 82:99–112

    Article  Google Scholar 

  • Grimshaw HJ, Wetzel RG, Brandenburg M, Segerblom K, Wenkert LJ, Marsh GA, Charnetzky W, Haky JE, Carraher C (1997) Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retention. Arch Fur Hydro 139:17–27

    CAS  Google Scholar 

  • Grunwald S, Osborne TZ, Reddy KR (2008) Temporal trajectories of phosphorus and pedo-patterns mapped in water conservation area 2A, Everglades, Florida, USA. Geoderma 146:1–13

    Article  CAS  Google Scholar 

  • Hagerthey SE, Newman S, Rutchey K, Smith EP, Godin J (2008) Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecol Monogr 78:547–565

    Article  Google Scholar 

  • Jones LA (1948) Soils, geology, and water control in the Everglades region. Bulletin 442. University of Florida Agricultural Experiment Station and Soil Conservation Service, Gainesville, FL

    Google Scholar 

  • Kalla PI, Scheidt DJ (2017) Everglades ecosystem assessment – Phase IV, 2014: data reduction and initial synthesis. United States Environmental Protection Agency, Science and Ecosystem Support Division. SESD Project 14-0380. Athens, Georgia

    Google Scholar 

  • King RS, Richardson CJ (2007) Subsidy–stress response of macroinvertebrate community biomass to a phosphorus gradient in an oligotrophic wetland ecosystem. J N Am Benthol Soc 26:491–508

    Article  Google Scholar 

  • King RS, Richardson CJ, Urban DL, Romanowicz EA (2004) Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7:75–97

    Article  CAS  Google Scholar 

  • Koch MS, Reddy KR (1992) Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci Soc Am J 56:1492–1499

    Article  Google Scholar 

  • Lake Okeechobee Technical Advisory Council (LOTAC) II (1990) Final report to the Governor, State of Florida, Secretary, Department of Environmental Regulation, Governing Board, South Florida Water Management District, West Palm Beach, Florida. 64 pp

    Google Scholar 

  • Leeds JA, Garrett PB, Newman JM (2009) Assessing impacts of hydropattern restoration of an overdrained wetland on soil nutrients, vegetation, and fire. Restor Ecol 17(4):460–469

    Article  Google Scholar 

  • Light SS, Dineen JW (1994) Water control in the Everglades: a historical perspective. In: Davis S, Ogden J (eds) Everglades: the ecosystems and its restoration. St. Lucie Press, Delray Beach, FL, pp 47–84

    Google Scholar 

  • Liston SE, Newman S, Trexler JC (2008) Macroinvertebrate community response to eutrophication in an oligotrophic wetland: an in situ mesocosm experiment. Wetlands 28:686–694

    Article  Google Scholar 

  • Lodge TE (2010) The Everglades handbook: understanding the ecosystem, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Maltby E, Dugan PJ (1994) Wetland ecosystem protection, management, and restoration: an international perspective. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL

    Google Scholar 

  • McCormick PV, O’Dell MB (1996) Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. J N Am Benthol Soc 15(4):450–468

    Article  Google Scholar 

  • McCormick PV, Stevenson RJ (1998) Periphyton as a tool for ecological assessment and management in the Florida Everglades. J Phycol 34:726–733

    Article  Google Scholar 

  • McCormick PV, O’Dell MB, Shuford RBE III, Backus JG, Kennedy WC (2001) Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquat Bot 71:119–139

    Article  CAS  Google Scholar 

  • McCormick PV, Newman S, Miao S, Gawlik DE, Marley D, Reddy KR, Fontaine TD (2002) Effects of anthropogenic phosphorus inputs on the Everglades. Chapter 3. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay and coral reefs of the Florida keys: an ecosystem sourcebook. CRC, Boca Raton, FL, pp 123–146

    Google Scholar 

  • McIvor CC, Ley JA, Bjork RD (1994) Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review. In: Davis SM, Odgen JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL

    Google Scholar 

  • Miao SL, DeBusk WF (1999) Effects of phosphorus enrichment on structure and function of sawgrass and cattail communities in Florida wetlands. In: Reddy KR, O’Connor GA, Schelske CL (eds) Phosphorus biogeochemistry of subtropical ecosystems. Lewis Publishers, Boca Raton, FL, 275 pp

    Google Scholar 

  • Miao SL, Sklar FH (1998) Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecosyst Manag 5:245–264

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York, NY, 920 pp

    Google Scholar 

  • Newman S, Grace JB, Kobel JW (1996) Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration. Ecol Appl 6:774–783

    Article  Google Scholar 

  • Newman S, Reddy KR, DeBusk WF, Wang Y (1997) Spatial distribution of soil nutrients in a northern Everglades marsh: water conservation area 1. Soil Sci Soc Am J 61:1275–1283

    Article  CAS  Google Scholar 

  • Newman S, Schuette J, Grace JB, Rutchey K, Fontaine T, Reddy KR, Pietrucha M (1998) Factors influencing cattail abundance in the northern Everglades. Aquat Bot 60:265–280

    Article  Google Scholar 

  • Newman S, Osborne TZ, Rutchey K, Reddy KR, Hagerthey SE (2009) Anthropogenic influences drive wetland landscape evolution: the Everglades trajectory. Ecol Monogr

    Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624

    Article  CAS  Google Scholar 

  • Noe GB, Childers DL, Edwards AL, Gaiser E, Jayachandran K, Lee D, Meeder J, Richards J, Scinto LJ, Trexler JC, Jones RD (2002) Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry 59:239–267

    Article  CAS  Google Scholar 

  • Noe GB, Scinto LJ, Taylor J, Childers DL, Jones RD (2003) Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshw Biol 48:1993–2008

    Article  CAS  Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy-stress gradient. Bioscience 29:349–352

    Article  Google Scholar 

  • Ogden JC (2005) Everglades ridge and slough conceptual ecological model. Wetlands 25:810–831

    Article  Google Scholar 

  • Osborne TZ, Newman S, Reddy KR (2008) Spatial distribution of total sulfur in the soils of the northern and southern Everglades. Final report # 45000-12699/14856. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Osborne TZ, Newman S, Kalla P, Scheidt DJ, Bruland GL, Cohen MJ, Scinto LJ, Ellis LR (2011a) Landscape patterns of significant soil nutrients and contaminants in the greater Everglades ecosystem: past, present, and future. Crit Rev Environ Sci Technol 41:121–148

    Article  CAS  Google Scholar 

  • Osborne TZ, Bruland GL, Newman S, Reddy KR, Grunwald S (2011b) Spatial distributions and eco-partitioning of soil biogeochemical properties in Everglades National Park. Environ Monit Assess 183:395–408

    Article  CAS  PubMed  Google Scholar 

  • Osborne TZ, Davis SE, Naja GM, Rivero RG, Ross MS (2011c) Report of the soils subgroup. In the SERES project: review of Everglades science, tools and needs related to key science management questions. Available at http://everglades-seres.org/SERES-_Everglades_Foundation/Products_files/SERES_Soils_Review%20copy.pdf

  • Osborne TZ, Ellis LR, Castro J, Sadle J (2012) Monitoring of phosphorus storage in park marsh land sediments: an assessment of the C-111 spreader canal project. Final report. South Florida Natural Resources Center, National Park Service, Homestead, FL, 117p

    Google Scholar 

  • Osborne TZ, Reddy KR, Ellis LR, Aumen N, Surratt DD, Zimmerman MS, Sadle J (2014) Evidence of recent phosphorus enrichment in surface soils of Taylor Slough and Northeast Everglades National Park. Wetlands 34(1):37–45

    Article  Google Scholar 

  • Osborne TZ, Newman S, Reddy KR, Ellis LR, Ross M (2015) Spatial distribution of soil nutrients in the Everglades protection area. In: Entry JA, Gottlieb AD, Jayachandran K, Ogram A (eds) Microbiology of the Everglades ecosystem. CRC, Boca Raton, FL, pp 38–67

    Chapter  Google Scholar 

  • Pant HK, Reddy KR (2003) Potential internal loading of phosphorus in constructed wetlands. Water Res 37:965–972

    Article  CAS  PubMed  Google Scholar 

  • Payne G, Weaver K, Bennett T (2003) Chapter 5: Development of a numeric phosphorus criterion for the Everglades protection area. In SFWMD (Eds.) Everglades consolidated report, South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Pietro K, Bearzotti R, Chimney M, Germain G, Iricanin N, Piccone T (2007) STA performance, compliance and optimization. Chapter 5, Vol 1. In: South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Qualls RG, Richardson CJ (1995) Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Sci 160:183–197

    Article  CAS  Google Scholar 

  • Rader RB, Richardson CJ (1992) The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades: a review. Wetlands 12(2):121–135

    Article  Google Scholar 

  • RECOVER (2006) CERP monitoring and assessment plan: part 2, 2006 Assessment strategy for the MAP, restoration, coordination and verification. US Army Corps of Engineers, Jacksonville District, Jacksonville, FL and South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Reddy KR, D’Angelo EM (1996) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol 35:1–10

    Article  Google Scholar 

  • Reddy KR, DeLaune RL (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca Raton, FL, p 774

    Book  Google Scholar 

  • Reddy KR, Feijtel TC, Patrick WH Jr (1986) Effect of soil redox conditions oon microbial oxidation of organic matter. In: Chen Y, Avnimelch Y (eds) The role of organic matter in modern agriculture. Dev Plant Sci Martinus Nijhoff, Dordrecht, pp 117–148

    Chapter  Google Scholar 

  • Reddy KR, DeBusk WF, Wang Y, DeLaune R, Koch M (1991) Physico-chemical properties of soils in the water conservation area 2 of the Everglades. Soil Science Department, Institute of Food and Agricultural Sciences, Gainesville, FL

    Google Scholar 

  • Reddy KR, DeLaune R, DeBusk WF, Koch MS (1993) Long term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    Article  CAS  Google Scholar 

  • Reddy KR, Wang Y, DeBusk WF, Newman S (1994) Physico-chemical properties of soils in water conservation area 3 (WCA-3) of the Everglades. Final report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Reddy KR, Newman S, Grunwald S, Osborne TZ, Corstanje R, Bruland GL, Rivero RG (2005) Everglades soil mapping final report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Richardson CJ, King RS, Qian SS, Vaithiyanathan P, Qualls RG, Stowe CA (2008) An ecological basis for establishment of a phosphorus threshold for the Everglades ecosystem. Chapter 25. In: Richardson CJ (ed) The Everglades experiments: lessons for ecosystem restoration. Springer, New York

    Chapter  Google Scholar 

  • Rivera-Monroy VH, Twilley RR, Davis SE, Childers DL, Simrad M, Chambers R (2011) The role of the Everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Crit Rev Environ Sci Technol 41(S1)

    Article  CAS  Google Scholar 

  • Rivero RG, Grunwald S, Osborne TZ, Reddy KR, Newman S (2007) Characterization of the spatial distribution of soil properties in water conservation area 2A, Everglades, Florida. Soil Sci 172:149–166

    Article  CAS  Google Scholar 

  • Rivero RG, Grunwald S, Binford MW, Osborne TZ (2009) Integrating spectral indices into prediction models of soil phosphorus in a subtropical wetland. Remote Sens Environ 113:2389–2402

    Article  Google Scholar 

  • Scheidt DJ, Kalla PI (2007) Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a R-EMAP status report. USEPA Region 4, Athens, GA. EPA 904-R-07-001. 98 pp

    Google Scholar 

  • Scheidt D, Stober J, Jones R, Thornton K (2000) South Florida ecosystem assessment: Everglades water management, soil loss, eutrophication and habitat. Report no. 904-R-00-003. US Environmental Protection Agency, Athens, GA

    Google Scholar 

  • Sergeant BL, Gaiser EE, Trexler JC (2010) Biotic and abiotic determinants of intermediate-consumer trophic diversity in the Florida everglades. Mar Freshw Res 61:11–22

    Article  CAS  Google Scholar 

  • SFWMD (1992) Surface water improvement and management plan for the Everglades. Supporting information document. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • SFWMD (South Florida Water Management District) (2007) South Florida environmental report. South Florida Water Management District, West Palm Beach, FL. www.sfwmd.gov/sfer

    Google Scholar 

  • Sklar F, McVoy C, VanZee R, Gawlik DE, Tarbonton K, Rudnick D, Miao S, Armentano T (2002) The effects of altered hydrology on the ecology of the Everglades. In: Porter J, Porter K (eds) The Everglades, Florida Bay, and coral reefs of the Florida keys: an ecosystem sourcebook. CRC, Boca Raton, FL

    Google Scholar 

  • Sklar FH, Chimney MJ, Newman S, McCormick P, Gawlik D, Miao S, McVoy C, Said W, Newman J, Coronado C, Crozier G, Korvela M, Rutchey K (2005) The ecological-societal underpinnings of Everglades restoration. Front Ecol Environ 3(3):161–169

    Google Scholar 

  • Snyder GH (2005) Everglades agricultural area soil subsidence and land use projections. Proc Soil Crop Sci Soc Fla 64:44–51

    Google Scholar 

  • Snyder GH, Davidson JM (1994) Everglades agriculture: past, present, and future. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucy Press, Delray Beach, FL, p 826

    Google Scholar 

  • Steinman AD, Havens KE, Carrick HJ, Van Zee R (2002) The past, present, and future hydrology and ecology of Lake Okeechobee and its watersheds. In: Porter JW, Porter KG (eds) The Everglades, Florida Bay, and coral reefs of the Florida keys: an ecosystem sourcebook. CRC, Boca Raton, FL

    Google Scholar 

  • Stephens JC (1956) Subsidence of organic soils in the Florida Everglades. Soil Sci Soc Am Proc 20:77–80

    Article  Google Scholar 

  • Stephens JC, Johnson L (1951) Subsidence of organic soils in the upper Everglades region of Florida. Proc Soil Sci Soc Fla 57:20–29

    Google Scholar 

  • Strickman RJ, Mitchell CPJ (2017) Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: an enriched isotope tracer study. Sci Total Environ 574:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Teal LR, Bulling MT, Parker ER, Solan M (2008) Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat Biol 2:207–218

    Article  Google Scholar 

  • Willard DW, Cronin TM (2007) Paleoecology and ecosystem restoration: case studies from Chesapeake bay and the Florida Everglades. Front Ecol Environ 5(9):491–498

    Article  Google Scholar 

  • Wright AL, Reddy KR (2001) Heterotrophic microbial activity in northern Everglades wetland soils. Soil Sci Soc Am J 65(6):1856–1864

    Article  CAS  Google Scholar 

  • Wright AL, Reddy KR (2007) Substrate-induced respiration for phosphorus-enriched and oligotrophic peat soils in an Everglades wetland. Soil Sci Soc Am J 71:1579–1583

    Article  CAS  Google Scholar 

  • Wright AL, Snyder GH (2009) Soil subsidence in the Everglades agricultural area. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication #SL 311

    Google Scholar 

  • Wu Y, Sklar FH, Rutchey K (1997) Analysis and simulations of fragmentation patterns in the Everglades. Ecol Appl 7:268–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Phelps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phelps, S.A., Osborne, T.Z. (2019). Phosphorus in the Everglades and Its Effects on Oxidation-Reduction Dynamics. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_5

Download citation

Publish with us

Policies and ethics