Skip to main content

Dissolved Organic Matter Interactions with Mercury in the Florida Everglades

  • Chapter
  • First Online:
Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration

Abstract

The purpose of this chapter is to review the interactions of mercury with dissolved organic matter (DOM) in the Florida Everglades. Attention is given to the role of DOM to the complexation of inorganic Hg and methylmercury (MeHg), microbial Hg methylation, Hg and MeHg photochemistry, and MeHg bioaccumulation. This review shows that substantive changes in both DOM concentration and quality can be traced to land and water management practices in the northern Everglades, and that these perturbations to carbon cycling have likely impacted Hg biogeochemical cycling in the Everglades. The impact of sulfur enrichment on DOM quality, and its corresponding impact on microbial Hg methylation, is a special emphasis of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken GR, Gilmour CC, Krabbenhoft DP, Orem W (2011) Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Crit Rev Environ Sci Technol 41:217–248

    Article  CAS  Google Scholar 

  • Aquatic Cycling of Mercury in the Everglades Database. https://sofia.usgs.gov/exchange/acme/. Accessed 10 May 2017

  • Babiarz CL, Benoit JM, Shafer MM, Andren AW (1998) Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry 41:237–257

    Article  CAS  Google Scholar 

  • Balogh SJ, Nollet YH, Swain EB (2004) Redox chemistry in Minnesota streams during episodes of increased methylmercury discharge. Environ Sci Technol 38:4921–4927

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Gillman M, Turner R (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates AL, Orem WH, Harvey JW (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299

    Article  CAS  PubMed  Google Scholar 

  • Benoit J, Gilmour C, Mason R, Heyes A (1999a) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  • Benoit J, Mason R, Gilmour C (1999b) Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem 18:2138–2141

    CAS  PubMed  Google Scholar 

  • Bergamaschi BA, Krabbenhoft DP, Aiken GR et al (2012) Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environ Sci Technol 46:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Black FJ, Poulin BA, Flegal AR (2012) Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim Cosmochim Acta 84:492–507

    Article  CAS  Google Scholar 

  • Brigham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ Sci Technol 43:2720–2725. https://doi.org/10.1021/es802694n

    Article  CAS  PubMed  Google Scholar 

  • Castro H, Reddy KR, Ogram A (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chasar LC, Scudder BC, Stewart AR et al (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43:2733–2739

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Maie N, Parish K, Jaffé R (2013) Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland. Biogeochemistry 115:167–183

    Article  CAS  Google Scholar 

  • Christensen GA, Wymore AM, King AJ et al (2016) Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment. Appl Environ Microbiol 82:6068–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleckner LB, Garrison PJ, Hurley JP, Olson ML (1998) Trophic transfer of methyl mercury in the northern Florida Everglades. Biogeochemistry 40:347–361

    Article  CAS  Google Scholar 

  • Cory R, McKnight D (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  CAS  PubMed  Google Scholar 

  • Davis SE III, Childers DL, Noe GB (2006) The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569:87–97

    Article  CAS  Google Scholar 

  • Deonarine A, Hsu-Kim H (2009) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43:2368–2373

    Article  CAS  PubMed  Google Scholar 

  • Deonarine A, Lau BLT, Aiken GR et al (2011) Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ Sci Technol 45:3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Dittman JA, Shanley JB, Driscoll CT et al (2010) Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams. Water Resour Res 46:W07522

    Article  CAS  Google Scholar 

  • Drexel R, Haitzer M, Ryan J et al (2002) Mercury(II) sorption to two Florida Everglades peats: evidence for strong and weak binding and competition by dissolved organic matter released from the peat. Environ Sci Technol 36:4058–4064

    Article  CAS  PubMed  Google Scholar 

  • Driscoll CT, Blette V, Yan C, Schofield CL (1995) The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water Air Soil Pollut 80:499–508

    Article  CAS  Google Scholar 

  • Drott A, Lambertsson L, Bjorn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41:2270–2276

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Gómez C, Drott A, Bjorn E et al (2013) Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal Lake-wetland gradient. Environ Sci Technol 47:6279–6287

    Article  PubMed  CAS  Google Scholar 

  • Gasper J, Aiken G, Ryan J (2007) A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants. Appl Geochem 22:1583–1597

    Article  CAS  Google Scholar 

  • Gerbig C, Kim C, Stegemeier J et al (2011) Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environ Sci Technol 45:9180–9187

    Article  CAS  PubMed  Google Scholar 

  • Gilmour C, Krabbenhoft DP, Orem W (2004) Appendix 2B-3: mesocosm studies to quantify how methylmercury in the Everglades responds to changes in mercury, sulfur, and nutrient loading. In: 2004 Everglades consolidated report, South Florida Water Management District and Florida Department of Environmental Protection

    Google Scholar 

  • Gilmour CC, Podar M, Bullock AL et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  PubMed  Google Scholar 

  • Gondikas AP, Jang EK, Hsu-Kim H (2010) Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids. J Colloid Interface Sci 347:167–171

    Article  CAS  PubMed  Google Scholar 

  • Gorski PR, Armstrong DE, Hurley JP, Krabbenhoft DP (2008) Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environ Pollut 154:116–123

    Article  CAS  PubMed  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723

    Article  CAS  PubMed  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2013) Effect of dissolved organic matter source and character on microbial Hg methylation in Hg–S–DOM solutions. Environ Sci Technol 47:5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Graham AM, Cameron-Burr KT, Hajic HA et al (2017) Sulfurization of dissolved organic matter increases Hg-sulfide-dissolved organic matter bioavailability to a Hg-methylating bacterium. Environ Sci Technol 51:9080–9088

    Article  CAS  PubMed  Google Scholar 

  • Gu B, Bian Y, Miller CL, Dong W (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Nat Acad Sci 108:1479–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haitzer M, Aiken G, Ryan J (2002) Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio. Environ Sci Technol 36:3564–3570

    Article  CAS  PubMed  Google Scholar 

  • Haitzer M, Aiken G, Ryan J (2003) Binding of mercury(II) to aquatic humic substances: influence of pH and source of humic substances. Environ Sci Technol 37:2436–2441

    Article  CAS  PubMed  Google Scholar 

  • Hall BD, Aiken GR, Krabbenhoft DP et al (2008) Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environ Poll 154:124–134

    Article  CAS  Google Scholar 

  • He F, Zheng W, Liang L, Gu B (2012) Mercury photolytic transformation affected by low-molecular-weight natural organics in water. Sci Tot Environ 416:429–435

    Article  CAS  Google Scholar 

  • Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20

    Article  CAS  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Hertkorn N, Harir M, Cawley KM et al (2016) Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS. Biogeosciences 13:2257–2277

    Article  CAS  Google Scholar 

  • Hintelmann H, Keppel-Jones K, Evans RD (2000) Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem 19:2204–2211

    Article  CAS  Google Scholar 

  • Hoffmann M, Mikutta C, Kretzschmar R (2012) Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy. Environ Sci Technol 46:11788–11797

    Article  CAS  PubMed  Google Scholar 

  • Holmes CD, Krishnamurthy NP, Caffrey JM et al (2016) Thunderstorms increase mercury wet deposition. Environ Sci Technol 50:9343–9350

    Article  CAS  PubMed  Google Scholar 

  • Horvath O, Vogler A (1993) Photoredox chemistry of chloromercurate(II) complexes in acetonitrile. Inorg Chem 32:5485–5489

    Article  CAS  Google Scholar 

  • Hsu H, Sedlak D (2003) Strong Hg(II) complexation in municipal wastewater effluent and surface waters. Environ Sci Technol 37:2743–2749

    Article  CAS  PubMed  Google Scholar 

  • Hurley JP, Krabbenhoft DP, Cleckner LB, Olson ML (1998) System controls on the aqueous distribution of mercury in the northern Florida Everglades. Biogeochemistry 40:293–310

    Article  CAS  Google Scholar 

  • Jeremiason JD, Portner JC, Aiken GR et al (2015) Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter. Environ Sci Process Impacts 17:1892–1903

    Article  CAS  PubMed  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB et al (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624

    Article  CAS  PubMed  Google Scholar 

  • Khwaja A, Bloom P, Brezonik P (2006) Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environ Sci Technol 40:844–849

    Article  CAS  PubMed  Google Scholar 

  • Khwaja AR, Bloom PR, Brezonik PL (2010) Binding strength of methylmercury to aquatic NOM. Environ Sci Technol 44:6151–6156

    Article  CAS  PubMed  Google Scholar 

  • King J, Kostka JE, Frischer M, Saunders F (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krabbenhoft DP, Hurley JP, Olson ML, Cleckner LB (1998) Diel variability of mercury phase and species distributions in the Florida Everglades. Biogeochemistry 40:311–325

    Article  CAS  Google Scholar 

  • Kucharzyk KH, Deshusses MA, Porter KA, Hsu-Kim H (2015) Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Environ Sci Process Impacts 17:1568–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamborg C, Tseng C, Fitzgerald W et al (2003) Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with “reducible Hg” titrations. Environ Sci Technol 37:3316–3322

    Article  CAS  PubMed  Google Scholar 

  • Lenherr I, St. Louis V (2009) Importance of ultraviolet radiation in photodemethylation of methylmercury in freshwater ecosystems. Environ Sci Technol 43:5692–5698

    Article  CAS  Google Scholar 

  • Liem-Nguyen V, Bouchet S, Bjorn E (2015) Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri) benzoate and online preconcentration. Anal Chem 87:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Lindberg S, Dong W, Chanton J et al (2005) A mechanism for bimodal emission of gaseous mercury from aquatic macrophytes. Atmos Environ 39:1289–1301

    Article  CAS  Google Scholar 

  • Liu G, Cai Y, Philippi T et al (2008) Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Environ Pollut 153:257–265

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Cai Y, Mao Y et al (2009) Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades. Environ Sci Technol 43:4361–4366

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Naja GM, Kalla P et al (2011) Legacy and fate of mercury and methylmercury in the Florida Everglades. Environ Sci Technol 45:496–501

    Article  CAS  PubMed  Google Scholar 

  • Luengen AC, Fisher NS, Bergamaschi BA (2012) Dissolved organic matter reduces algal accumulation of methylmercury. Environ Toxicol Chem 31:1712–1719

    Article  CAS  PubMed  Google Scholar 

  • MacCrehan W, Shea D (1995) Temporal relationship of thiols to inorganic sulfur compounds in anoxic Chesapeake Bay sediment porewater. ACS Symp Ser 612:294–310

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF Jr (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398

    Article  CAS  Google Scholar 

  • Maie N, Yang C, Miyoshi T et al (2005) Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnol Oceanogr 50:23–35

    Article  CAS  Google Scholar 

  • Maie N, Jaffé R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314

    Article  CAS  Google Scholar 

  • Manceau A, Nagy KL (2012) Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochim Cosmochim Acta 99:206–223

    Article  CAS  Google Scholar 

  • Mazrui NM, Jonsson S, Thota S et al (2016) Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochim Cosmochim Acta 194:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick PV, Harvey JW, Crawford ES (2011) Influence of changing water sources and mineral chemistry on the Everglades ecosystem. Crit Rev Environ Sci Technol 41:28–63

    Article  CAS  Google Scholar 

  • Miller CL, Southworth G, Brooks S et al (2009) Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment. Environ Sci Technol 43:8548–8553

    Article  CAS  PubMed  Google Scholar 

  • Moreau JW, Gionfriddo CM, Krabbenhoft DP et al (2015) The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol 46:292–299

    Google Scholar 

  • National Institute of Standards and Technology (2013) NIST critically selected stability constants of metal complexes

    Google Scholar 

  • Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science 319:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Parks JM, Johs A, Podar M et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  PubMed  Google Scholar 

  • Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41:125–131

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD, Axelrad DM (2014) Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013). Bull Environ Contam Toxicol 93:509–516

    Article  CAS  PubMed  Google Scholar 

  • Poulin BA, Ryan JN, Nagy KL et al (2017) Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment. Environ Sci Technol 51:3630–3639

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Yin X, Lin H et al (2014) Why dissolved organic matter enhances photodegradation of methylmercury. Environ Sci Technol Lett 1:426–431

    Article  CAS  Google Scholar 

  • Qualls RG, Richardson CJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55:319–331

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran M, Aiken G, Reddy M, Ryan J (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 32:3305–3311

    Article  CAS  Google Scholar 

  • Ravichandran M, Aiken G, Ryan J, Reddy M (1999) Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 33:1418–1423

    Article  CAS  Google Scholar 

  • Riccardi D, Guo H-B, Parks JM et al (2013) Why mercury prefers soft ligands. J Phys Chem Lett 4:2317–2322

    Article  CAS  Google Scholar 

  • Rode M, Wade AJ, Cohen MJ et al (2016) Sensors in the stream: the high-frequency wave of the present. Environ Sci Technol 50:10297–10307

    Article  CAS  PubMed  Google Scholar 

  • Rumbold DG, Lange TR, Axelrad DM, Atkeson TD (2008) Ecological risk of methylmercury in Everglades National Park, Florida, USA. Ecotoxicology 17:632–641

    Article  CAS  PubMed  Google Scholar 

  • Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126

    Article  CAS  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W et al (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108:8714–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidt DJ, Kalla PI (2007) EPA Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat monitoring for adaptive management: a R-EMAP status report. US EPA Region 4, Athens, GA

    Google Scholar 

  • Schuster PF, Striegl RG, Aiken GR et al (2011) Mercury export from the Yukon River basin and potential response to a changing climate. Environ Sci Technol 45:9262–9267

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach G, Schellenberg M (1965) Die komplexchemie des methylquecksilber-kations. Helv Chim Acta 48:28–46

    Article  CAS  Google Scholar 

  • Si L, Ariya PA (2011) Aqueous photoreduction of oxidized mercury species in presence of selected alkanethiols. Chemosphere 84:1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, O’Driscol NJ, Lean DRS (2002) Microbial reduction and oxidation of mercury in freshwater lakes. Environ Sci Technol 36:3064–3068

    Article  CAS  PubMed  Google Scholar 

  • Sklar FH, Chimney MJ, Newman S et al (2005) The ecological–societal underpinnings of Everglades restoration. Front Ecol 3:161–169

    Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosci 113:G00C03

    Article  CAS  Google Scholar 

  • Skyllberg U, Bloom P, Qian J et al (2006) Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180

    Article  CAS  PubMed  Google Scholar 

  • Sleighter RL, Chin Y-P, Arnold WA et al (2014) Evidence of incorporation of abiotic S and N into prairie wetland dissolved organic matter. Environ Sci Technol Lett 1:345–350

    Article  CAS  Google Scholar 

  • Slowey AJ (2010) Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochim Cosmochim Acta 74:4693–4708

    Article  CAS  Google Scholar 

  • Stern J, Wang Y, Gu B, Newman J (2007) Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Appl Geochem 22:1936–1948

    Article  CAS  Google Scholar 

  • Szczuka A, Morel FMM, Schaefer JK (2015) Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 49:7432–7438

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Li Y, Yin Y et al (2014) Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation. Environ Sci Technol 48:7333–7340

    Article  CAS  PubMed  Google Scholar 

  • Thomas SA, Tong T, Gaillard J-F (2014) Hg(II) bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics 6:2213–2222

    Article  CAS  PubMed  Google Scholar 

  • Tossell JA (1998) Theoretical study of the photodecomposition of methyl Hg complexes. J Phys Chem A 102:3587–3591

    Article  CAS  Google Scholar 

  • Tsui MTK, Finlay JC (2011) Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environ Sci Technol 45:5981–5987

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Jaffé R, Cawley K et al (2015) Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system. Front Chem 3:155

    Article  Google Scholar 

  • Wang Y, Hsieh YP, Landing WM et al (2002) Chemical and carbon isotopic evidence for the source and fate of dissolved organic matter in the northern Everglades. Biogeochemistry 61:269–289

    Article  CAS  Google Scholar 

  • Waples J, Nagy K, Aiken G, Ryan J (2005) Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta 69:1575–1588

    Article  CAS  Google Scholar 

  • Warner KA, Roden EE, Bonzongo J-C (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Watras CJ, Back RC, Halvorsen S et al (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  PubMed  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    Article  CAS  PubMed  Google Scholar 

  • Yamashita Y, Scinto LJ, Maie N, Jaffé R (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems 13:1006–1019

    Article  CAS  Google Scholar 

  • Yu Z-G, Peiffer S, Göttlicher J, Knorr K-H (2015) Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ Sci Technol 49:5441–5449

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Wang F, House J, Page B (2004) Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol Oceanogr 49:2276–2286

    Article  CAS  Google Scholar 

  • Zhang T, Kim B, Levard C et al (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Kucharzyk KH, Kim B et al (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 48:9133–9141

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Hintelmann H (2010) Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds. J Phys Chem A 114:4246–4253

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Liang L, Gu B (2012) Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 46:292–299

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Wang W-X (2009) Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environ Sci Technol 43:8998–9003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to the memory of George Aiken, who contributed many seminal studies of DOM in the Everglades and elsewhere, and who provided invaluable mentorship to the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graham, A.M. (2019). Dissolved Organic Matter Interactions with Mercury in the Florida Everglades. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_4

Download citation

Publish with us

Policies and ethics