Skip to main content

Abstract

Human exposure to mercury, a potent neurotoxicant, results primarily from consumption of fish contaminated with methylmercury. The Everglades is a mercury-in-fish hotspot by reason of its high deposition rate of atmospheric mercury, agricultural inputs of sulfate, and the biogeochemistry of the ecosystem. Anglers and hunters and their families who eat their catch from the Everglades are a subpopulation potentially at risk of excessive mercury exposure. Current fish consumption advisories for the Everglades recommend that anglers and hunters limit and, in some cases refrain, from consuming freshwater, marine and estuarine fish species, as well as pig frogs and alligators. These advisories however may not be sufficiently protective, particularly for those that consume higher than average amounts of fish and game. Here, we develop and apply a probabilistic risk assessment to examine risks to sport and subsistence hunters and anglers consuming Everglades fish and wildlife, discuss advantages of this methodology, and examine the premise that current methods and advisories are sufficiently protective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg B, Ekman L, Falk R, Greitz U, Persson G (1969) Metabolism of methyl mercury (203Hg) compounds in man. Arch Environ Health 19:478–484

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1999) Toxicological profile for mercury. (Update) US Department of Health and Human Services Public, Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Axelrad DM, Pollman C, Gu B, Lange T (2013) Mercury and sulfur environmental assessment for the Everglades. South Florida Environmental Report, vol 1, Chapter 3B, South Florida Water Management District, West Palm Beach, FL, 57 pp. http://my.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2013_sfer/v1/chapters/v1_ch3b.pdf

  • Bates AL, Orem WH, Harvey JW, Spiker EC (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299

    Article  CAS  PubMed  Google Scholar 

  • Cernichiari E, Brewer R, Myers GJ, Marsh DO, Lapham LW, Cox C, Shamlaye CF, Berlin M, Davidson PW, Clarkson TW (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neurotoxicology 16:705–710

    CAS  PubMed  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW, Hursh JB, Sager PR, Syversen TLM (1988) Mercury. In: Clarkson TW, Friberg L, Norgberg GF, Sager PR (eds) Biological monitoring of toxic metals. Plenum Press, New York, pp 199–246

    Chapter  Google Scholar 

  • Cox C, Clarkson TW, Marsh DO, Amin-Kaki L, Tikneti S, Myers GG (1986) Dose-response analysis of infants prenatally exposed to methylmercury: an application of a single compartment model to single-strand hair analysis. Environ Res 49:193–214

    Google Scholar 

  • Crump KS, Kjellstrom T, Shipp AM, Silvers A, Stewart A (1998) Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmarked analysis of a New Zealand Cohort. Risk Anal 18(6):701–713

    Article  CAS  PubMed  Google Scholar 

  • Davidson PW, Myers GJ, Cos C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson TW (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. J Am Med Assoc 280(8):701–707

    Article  CAS  Google Scholar 

  • Debes DC, Dramer JH, Kaplan E, Weuhe P, White RF, Grandjean P (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Nerotoxicol Teratol 28:536–547

    Article  CAS  Google Scholar 

  • Debes F, Weihe P, Grandjean P (2016) Cognitive deficits as age 22 years associated with prenatal exposure to methymercury. Cortex 74:358–369

    Article  PubMed  Google Scholar 

  • Douglas MS (1947) The Everglades: River of Grass. Rinehart, New York. Reprinted (1988) by Pineapple Press, Sarasota, FL

    Google Scholar 

  • FDEP (Florida Department of Environmental Protection) (2013) Final Report. Mercury TMDL for the State of Florida. Division of Environmental Assessment and Restoration. Bureau of Watershed Restoration. Watershed Evaluation and TMDL Section. 24 October 2013. https://floridadep.gov/sites/default/files/Mercury-TMDL.pdf

  • FDEP (Florida Department of Environmental Protection) (2018) Final Integrated Water Quality Assessment for Florida: 2018 Sections 303(d), 305(b), and 314 Report and Listing Update. Division of Environmental Assessment and Restoration. Florida Department of Environmental Protection. June 2018. https://floridadep.gov/dear/bioassessment/documents/integrated-303d305b-report-2018

  • FDOH (Florida Department of Health) (2008) News Release: consumption advisory for pig frog legs for Everglades and Francis S. Taylor Wildlife management area (Water Conservation Areas 2 and 3) in Palm Beach, Broward and Miami-Dade Counties. 14 May 2008. Florida Department of Health, Tallahassee, FL

    Google Scholar 

  • FDOH (Florida Department of Health) (2019) Your guide to eating fish caught in Florida. http://www.floridahealth.gov/programs-and-services/prevention/healthy-weight/nutrition/seafood-consumption/_documents/fish-advisory-big-book2019.pdf

  • FFWCC (Florida Fish and Wildlife Conservation Commission Florida) (2018a) Freshwater Fishing Regulations 2017–2018. http://myfwc.com/media/4234225/2017FLFWRegulations.pdf

  • FFWCC (Florida Fish and Wildlife Conservation Commission Florida) (2018b) Florida Hunting Regulations 2017–2018. http://www.eregulations.com/wp-content/uploads/2017/06/17FLHD_LR.pdf

  • FFWCC (Florida Fish and Wildlife Conservation Commission Florida). (2018c) Everglades and Francis S. Taylor Wildlife management areas. http://myfwc.com/viewing/recreation/wmas/lead/everglades/

  • FFWCC (Florida Fish and Wildlife Conservation Commission Florida) (2019) Guide to alligator hunting in Florida. https://myfwc.com/media/16675/alligator-hunting-guide.pdf. Accessed 10 May 2019

  • Florida Museum of Natural History (2018) Discover fishes. Mayaheros urophthalmus. https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/mayaheros-urophthalmus/

  • Fleming LE, Watkins S, Kaderman R, Levin B, Ayyar DR, Bizzio M, Stephens D, Bean JA (1995) Mercury exposure in humans through food consumption from the Everglades in Florida. Water Air Soil Pollut 80:41–48

    Article  CAS  Google Scholar 

  • Freire C, Ramos R, Lopez-Espinosa MJ, Diez S, Vioque J, Ballester F, Fernandez MF (2010) Hair mercury levels, fish consumptions, and cognitive development in preschool children from Granada, Spain. Environ Res 110(1):96–104

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yan CH, Tian Y, Wang Y, Xie HF, Zhou C, Yu XD, Yu XG, Tong S, Zhou QX, Shen XM (2007) Prenatal exposure to mercury and neurobehavioral development of neonates in Zhoushan City, China. Environ Res 105(3):390–399

    Article  CAS  PubMed  Google Scholar 

  • Gilmour CC, Krabbenhoft D, Orem W, Aiken G, Roden D (2007) Appendix 3B-2. Status Report on ACME Studies on the control of mercury methylation and bioaccumulation in the Everglades. In: Redfield G (ed) 2007 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL. http://my.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/volume1/appendices/v1_app_3b-2.pdf

    Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ (1997) Cognitive deficits associated with 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Weihe P, White RF (1998) Cognitive performance of children prenatal exposed to safe levels of methylmercury. Environ Res 77:165–172

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Butdtz-Jorgensen E, White R, Jorgensen P, Weihe P, Debes F, Keiding N (1999) Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am J Epidemiol 150:301–305

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Satoh H, Katsuyuki Murata K, Eto K (2010) Adverse effects of methylmercury: environmental health research implications. Environ Health Perspect 118:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean P, Weihe P, Nielsen F, Heinzow B, Debes F, Budtz-Jorgensen E (2012) Neurobehavioral deficits at age 7 years associated with prenatal exposure to toxicants from maternal seafood diet. Neurotoxicol Teratol 34:466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada M (1997) Neurotoxicity of methylmercury: Minamata and the Amazon. In: Yasui M, Strong MJ, Ota K, Verity MA (eds) Mineral and metal neurotoxicology. CRC Press, Boca Raton, FL, pp 177–188

    Google Scholar 

  • Hecky RE, Ramsey DJ, Bodaly RA, Strange NE (1991) In: Suzuki T (ed) Advances in mercury toxicology. Plenum Press, New York, pp 33–52

    Chapter  Google Scholar 

  • Hursh JB, Clarkson TW, Miles EF (1989) Percutaneous absorption of mercury vapor by man. Arch Environ Health 44:120–127

    Article  CAS  PubMed  Google Scholar 

  • IPCS (International Program on Chemical Safety) (1990) Environmental Health Criteria Document 101: Methylmercury. World Health Organization, Geneva

    Google Scholar 

  • Jacobson JL, Muckle G, Ayotte P, Dewailly E, Jacobson SW (2015) Relation of prenatal methylmercury exposure from environmental sources to childhood IQ. Environ Health Perspect 123(8):827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, Lisowska-Miszczyk I, Szparowska-Wohn A, Rauh B, Stolicki Z, Kaim I, Perera F (2006) Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiology cohort study in Poland. Ann Epidemiol 16(6):439–447

    Article  PubMed  Google Scholar 

  • Jedrychowski W, Perera F, Jankowski J, Rauh V, Flak E, Caldwell KL, Jones RL, Pac A, Lisowska-Miszczyk I (2007) Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life: Krakow epidemiologic study. Environ Int 33(8):1057–1062

    Article  PubMed  Google Scholar 

  • Karagas M, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on human health effects on low-level methylmercury exposure. Environ Health Perspect 120(6):799–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by amino acid carrier. Am J Physiol 262(5):R761–R765

    CAS  PubMed  Google Scholar 

  • Kershaw TG, Clarkson TW, Dhahir PH (1980) The relationship between blood-brain levels and dose of methylmercury in man. Arch Environ Health 35:28–36

    Article  CAS  PubMed  Google Scholar 

  • Kjellstrom T, Kennedy P, Wallis S (1989) Physical and mental development of children with prenatal exposure to mercury from fish. Stage II: Interviews and psychological tests at age 6. National Swedish Environmental Protection Board. Report 3642. Solna, Sweden

    Google Scholar 

  • Kuratko CN, Barrett EC, Nelson EB, Salem N Jr (2013) The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: a review. Nutrients 5(7):2777–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landing WL (2013) Review and comment in writing on two documents: Regional sulfur mass balance centered on the EAA: an outline for investigations and suggested projects for EAA sulfur mass balance study (draft). Report to the Florida Department of Environmental Protection. DEP Contract: SP703. 16 January 2013

    Google Scholar 

  • Lederman SA, Jones RL, Caldwell JL, Rouh V, Sheets SE, Tang D, Viswanathan S, Becker M, Stein JL, Wang RY, Perera F (2008) Relations between cord blood mercury levels and early child development in World Trade Center Cohort. Environ Health Perspect 113:1085–1096

    Article  Google Scholar 

  • Lippmann M (ed) (2009) Environmental toxicants: human exposures and their health effects, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Lovejoy HN, Bell ZG, Bizena TR (1974) Mercury exposure evaluations and their correlations with urine mercury excretions. J Occup Med 15:590

    Google Scholar 

  • Lynch ML, Huang LS, Cox S, Strain JJ, Myers GJ, Bonham MP, Shamlaye CF, Stokes-Riner A, Wallace JMW, Duffy EM, Clarkson TW, Davidson PW (2011) Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study. Environ Res 111(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • McCally D (1999) The Everglades: an environmental history. University Press of Florida. ISBN 0-8130-2302-5

    Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Miettinen JK (1973) Absorption and elimination of dietary (Hg++) and methylmercury in man. In: Miller MW, Clarkson TW (eds) Mercury, mercurial, and mercaptans. C.C. Thomas, Springfield, IL, pp 233–246

    Google Scholar 

  • Myers GJ, Davidson PW (1998) Low level prenatal methylmercury exposure and children: neurological, developmental and behavioral research. Environ Health Perspect 106:841–847

    PubMed  PubMed Central  Google Scholar 

  • Myers GJ, Davidson PW, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, Sloane-Reeves J, Wilding GE, Kost J, Huang L-S, Clarkson TW (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361(9370):1686–1692

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF, Fowler NA, Nordberg M, Friberg L (eds) (2007) Handbook on the toxicology of metals, 3rd edn. Academic Press, San Diego, CA

    Google Scholar 

  • NPS (National Park Service) (2015) Everglades is internationally significant. https://www.nps.gov/ever/learn/news/internationaldesignations.htm

  • NPS (National Park Service) (2019) Everglades National Park. Threatened and endangered species. https://www.nps.gov/ever/learn/nature/techecklist.htm

  • NRC (National Research Council) (2000) Toxicological effects of methylmercury. The National Academies Press, Washington, DC. https://doi.org/10.17226/9899

    Google Scholar 

  • Ogden JC, Robertson WB, Davis GE, Schmidt TW (1974) Pesticides, polychlorinated biphenyls and heavy metals in upper food chain levels, Everglades National Park and vicinity. U.S. Department of the Interior, National Technical Information Service, No. PB-235 359

    Google Scholar 

  • Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gilman MW (2005) Maternal fish consumption, hair mercury, and infant cognition in the U.S. cohort. Environ Health Perspect 113:1376–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oken E, Radesky JS, Wright RO, Bellinger DC, Anarasiriward CJ, Kleinman KP (2008) Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a U.S. Cohort. Am J Epidemiol 167(10):1171–1181

    Article  PubMed  Google Scholar 

  • Orem W, Gilmour C, Axelrad D, Krabbenhoft D, Scheidt D, Kalla P, McCormick P, Gabriel M, Aiken G (2011) Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Crit Rev Environ Sci Technol 41(S1):249–288. https://doi.org/10.1080/10643389.2010.531201

    Article  CAS  Google Scholar 

  • Smith JC, Allen P, Turner MD (1994) The kinetics of intravenously administered methylmercury in man. Toxicol Appl Pharmacol 128:251–256

    Article  CAS  PubMed  Google Scholar 

  • Stern AH, Smith AE (2003) An assessment of the cord blood: maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect 111(12):1465–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Hongo T, Yoshinaga J, Imai H, Nakazawa M, Matsuo N, Akagi H (1993) The hair-organ relationship in mercury concentration in contemporary Japanese. Arch Environ Health 48:221–229

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Simada M, Hosakawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H (2010) Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ Res 110(7):699–704

    Article  CAS  PubMed  Google Scholar 

  • Tsubaki T, Takahashi H (1986) Clinical aspects of Minamata disease. Neurological aspects of methylmercury poisoning in Minamata. In: Tsubaki T, Takahashi H (eds) Recent advances in Minamata disease studies. Kodansha, Tokyo, pp 41–57

    Google Scholar 

  • Uchino M, Okajima T, Eto K, Kumamoto T, Mishima I, Ando M (1995) Neurologic features of chronic Minamata disease (organic mercury poisoning) certified at autopsy. Intern Med 34(8):744–747

    Article  CAS  PubMed  Google Scholar 

  • USDA (U.S. Department of Health and Human Services and U.S. Department of Agriculture) (2015) 2015–2020 dietary guidelines for Americans, 8th edn. December 2015. http://health.gov/dietaryguidelines/2015/guidelines/

  • US EPA (2013) 2011 National Listing of Fish Advisories. EPA-820-F-13-058. USEPA, National Fish Advisory Program, Office of Science and Technology. Washington, DC. http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories

  • US EPA (2018a) Impaired waters and TMDLs. Impaired waters restoration process: planning. https://www.epa.gov/tmdl/impaired-waters-restoration-process-planning

  • US EPA (2018b) Impaired waters and TMDLs. Overview of total maximum daily loads (TMDLs). https://www.epa.gov/tmdl/overview-total-maximum-daily-loads-tmdls

  • US FDA (U.S. Food and Drug Administration) (2004) What you need to know about mercury in fish and shellfish. 2004 EPA and FDA advice. https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm351781.htm

  • US FDA (U.S. Food and Drug Administration) (2018) Eating fish: what pregnant women and parents should know. https://www.fda.gov/food/consumers/eating-fish-what-pregnant-women-and-parents-should-know

  • van Wijngaarden E, Thurston SW, Myers GJ, Strain JJ, Weiss B, Zarcone T, Watson GE, Zareba G, McSorley EM, Mulhern MS, Yeates AJ, Henderson J, Gedeon J, Shamlaye CF, Davidon PW (2013) Prenatal methylmercury exposure in relation to neurodevelopment and behavior at 19 years of age in the Seychelles Child development Study. Neurotoxicol Teratol 39:19–25

    Article  PubMed  CAS  Google Scholar 

  • Ware FJ, Royals H, Lange T (1990) Mercury contamination in Florida largemouth bass. Proc Annu Conf SEAFWA 44:5–12

    Google Scholar 

  • World Health Organization (1990) Methylmercury. WHO, Geneva. http://inchem.org/documents/ehc/ehc/ehc101.htm

  • Zheng W (2002) Blood-brain barrier and blood-CSF barrier in metal-induced neurotoxicities. In: Massaro EJ (ed) Handbook of neurotoxicology, vol 1. Humana Press, Totowa, NJ, pp 161–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Axelrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Axelrad, D.M., Jagoe, C., Becker, A. (2019). Everglades Mercury: Human Health Risk. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_11

Download citation

Publish with us

Policies and ethics