Skip to main content

Protein Complex Similarity Based on Weisfeiler-Lehman Labeling

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Abstract

Proteins in living cells rarely act alone, but instead perform their functions together with other proteins in so-called protein complexes. Being able to quantify the similarity between two protein complexes is essential for numerous applications, e.g. for database searches of complexes that are similar to a given input complex. While the similarity problem has been extensively studied on single proteins and protein families, there is very little existing work on modeling and computing the similarity between protein complexes. Because protein complexes can be naturally modeled as graphs, in principle general graph similarity measures may be used, but these are often computationally hard to obtain and do not take typical properties of protein complexes into account. Here we propose a parametric family of similarity measures based on Weisfeiler-Lehman labeling. We evaluate it on simulated complexes of the extended human integrin adhesome network. We show that the defined family of similarity measures is in good agreement with edit similarity, a similarity measure derived from graph edit distance, but can be computed more efficiently. It can therefore be used in large-scale studies and serve as a basis for further refinements of modeling protein complex similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.5281/zenodo.1178084.

References

  1. Arvind, V., Köbler, J., Rattan, G., Verbitsky, O.: On the power of color refinement. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 339–350. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22177-9_26

    Chapter  MATH  Google Scholar 

  2. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In: 20th Annual Symposium on Foundations of Computer Science (SFCS), pp. 39–46. IEEE (1979)

    Google Scholar 

  3. Bhowmick, S.S., Seah, B.: Clustering and summarizing protein-protein interaction networks: a survey. IEEE Trans. Knowl. Data Eng. 28(3), 638–658 (2016)

    Article  Google Scholar 

  4. Boutros, M., Heigwer, F., Laufer, C.: Microscopy-based high-content screening. Cell 163(6), 1314–1325 (2015)

    Article  Google Scholar 

  5. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

    Article  MathSciNet  Google Scholar 

  6. Drew, K., et al.: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol. Syst. Biol. 13(6), 932 (2017)

    Article  Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  8. Grecco, H.E., Imtiaz, S., Zamir, E.: Multiplexed imaging of intracellular protein networks. Cytometry A 89(8), 761–775 (2016)

    Article  Google Scholar 

  9. Hernandez, C., Mella, C., Navarro, G., Olivera-Nappa, A., Araya, J.: Protein complex prediction via dense subgraphs and false positive analysis. PLoS ONE 12(9), e0183460 (2017)

    Article  Google Scholar 

  10. Kann, V.: On the approximability of the maximum common subgraph problem. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 375–388. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-3_198

    Chapter  Google Scholar 

  11. Köster, J., Rahmann, S.: Snakemake - a scalable bioinformatics workflow engine. Bioinformatics 28(19), 2520–2522 (2012)

    Article  Google Scholar 

  12. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S.: The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2), 255–278 (2017)

    Article  Google Scholar 

  13. Laskowski, R.A., Gerick, F., Thornton, J.M.: The structural basis of allosteric regulation in proteins. FEBS Lett. 583(11), 1692–1698 (2009)

    Article  Google Scholar 

  14. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear programming formulation to compute the graph edit distance. Pattern Recogn. 72, 254–265 (2017)

    Article  Google Scholar 

  15. Ma, X., Gao, L.: Discovering protein complexes in protein interaction networks via exploring the weak ties effect. BMC Syst. Biol. 6(Suppl 1), S6 (2012)

    Article  Google Scholar 

  16. Park, H., Lee, H., Seok, C.: High-resolution protein-protein docking by global optimization: recent advances and future challenges. Curr. Opin. Struct. Biol. 35, 24–31 (2015)

    Article  Google Scholar 

  17. Pearson, W.R.: Selecting the right similarity-scoring matrix. Curr. Protoc. Bioinform. 43, 1–9 (2013)

    Google Scholar 

  18. Pellegrini, M., Baglioni, M., Geraci, F.: Protein complex prediction for large protein protein interaction networks with the Core&Peel method. BMC Bioinform. 17(Suppl 12), 372 (2016)

    Article  Google Scholar 

  19. Riesen, K., Ferrer, M., Bunke, H.: Approximate graph edit distance in quadratic time. IEEE/ACM Trans. Comput. Biol. Bioinform. (2015) (epub ahead of print)

    Google Scholar 

  20. Ruepp, A., et al.: CORUM: the comprehensive resource of mammalian protein complexes - 2009. Nucleic Acids Res. 38(suppl 1), D497–D501 (2010)

    Article  Google Scholar 

  21. Sánchez Claros, C., Tramontano, A.: Detecting mutually exclusive interactions in protein-protein interaction maps. PLoS ONE 7(6), e38765 (2012)

    Article  Google Scholar 

  22. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

    Article  Google Scholar 

  23. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Srihari, S., Yong, C.H., Wong, L.: Computational Prediction of Protein Complexes from Protein Interaction Networks. Association for Computing Machinery and Morgan & Claypool, New York (2017)

    Book  Google Scholar 

  25. Stöcker, B.K., Köster, J., Zamir, E., Rahmann, S.: Modeling and simulating networks of interdependent protein interactions. Integr. Biol. 10, 290–305 (2018)

    Article  Google Scholar 

  26. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Wachsmuth, M., Conrad, C., Bulkescher, J., Koch, B., Mahen, R., Isokane, M., Pepperkok, R., Ellenberg, J.: High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 33(4), 384–389 (2015)

    Article  Google Scholar 

  28. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya 2(9), 12–16 (1968). (in Russian)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Center (SFB) 876, projects A6 and C1, and by Mercator Research Center Ruhr (MERCUR), project Pe-2013-0012 (UA Ruhr professorship). The authors thank Eli Zamir for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Rahmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stöcker, B.K., Schäfer, T., Mutzel, P., Köster, J., Kriege, N., Rahmann, S. (2019). Protein Complex Similarity Based on Weisfeiler-Lehman Labeling. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics