Skip to main content

Automated Spinal Midline Delineation on Biplanar X-Rays Using Mask R-CNN

  • Conference paper
  • First Online:
Book cover VipIMAGE 2019 (VipIMAGE 2019)

Abstract

Manually annotating medical images with few landmarks to initialize 3D shape models is a common practice. For instance, when reconstructing the 3D spine from biplanar X-rays, the spinal midline, passing through vertebrae body centers (VBCs) and endplate midpoints, is required. This paper presents an automated spinal midline delineation method on frontal and sagittal views by using Mask R-CNN. The network detects all vertebrae from C7 to L5, followed by vertebrae segmentation and classification at the same time. After postprocessing to discard outliers, the vertebrae mask centers were regarded as VBCs to get the spine midline by polynomial fitting. Evaluation of the spinal midline on 136 images used root mean square error (RMSE) with respect to manual ground-truth. The RMSE ± standard error values of predicted spinal midlines (C7–L5) were 1.11 mm ± 0.67 mm on frontal views and 1.92 mm ± 1.38 mm on sagittal views. The proposed method is capable of delineating spinal midlines on patients with different spine deformity degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skalli, W., Vergari, C., Ebermeyer, E., Courtois, I., Drevelle, X., Kohler, R., Abelin-Genevois, K., Dubousset, J.: Early detection of progressive adolescent idiopathic scoliosis: a severity index. Spine 42(11), 823–830 (2017)

    Article  Google Scholar 

  2. Vergari, C., Courtois, I., Ebermeyer, E., Bouloussa, H., Vialle, R., Skalli, W.: Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur. Spine J. 25(10), 3049–3055 (2016)

    Article  Google Scholar 

  3. Brenner, D.J., Hall, E.J.: Computed tomography—an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  CAS  Google Scholar 

  4. Yazici, M., Acaroglu, E.R., Alanay, A., Deviren, V., Cila, A., Surat, A.: Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J. Pediatr. Orthop. 21(2), 252–256 (2001)

    CAS  PubMed  Google Scholar 

  5. Dubousset, J., Charpak, G., Dorion, I., Skalli, W., Lavaste, F., Deguise, J., Kalifa, G., Ferey, S.: A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull. de l’Academie nationale de medecine 189(2), 287–297 (2005)

    Article  Google Scholar 

  6. Humbert, L., De Guise, J.A., Aubert, B., Godbout, B., Skalli, W.: 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med. Eng. Phys. 31(6), 681–687 (2009)

    Article  CAS  Google Scholar 

  7. Ilharreborde, B., Steffen, J.S., Nectoux, E., Vital, J.M., Mazda, K., Skalli, W., Obeid, I.: Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine 36(20), E1306–E1313 (2011)

    Article  Google Scholar 

  8. Gajny, L., Ebrahimi, S., Vergari, C., Angelini, E., Skalli, W.: Quasi-automatic 3D reconstruction of the full spine from low dose biplanar X-rays based on statistical inferences and image analysis. Eur. Spine J. 28(4), 658–664 (2019)

    Article  Google Scholar 

  9. Galbusera, F., Niemeyer, F., Wilke, H.J., Bassani, T., Casaroli, G., Anania, C., Costa, F., Brayda-Bruno, M., Sconfienza, L.M.: Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur. Spine J. 28, 1–10 (2019)

    Article  Google Scholar 

  10. Aubert, B., Vazquez, C., Cresson, T., Parent, S., De, J.G.: Towards automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans. Med. Imaging (2019)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on keras and tensorflow (2017). https://github.com/matterport/Mask_RCNN

  13. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  14. Rousseau, M.A., Laporte, S., Chavary-Bernier, E., Lazennec, J.Y., Skalli, W.: Reproducibility of measuring the shape and three-dimensional position of cervical vertebrae in upright position using the EOS stereoradiography system. Spine 32(23), 2569–2572 (2007)

    Article  Google Scholar 

  15. Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net. Med. Image Anal. 48, 1–11 (2018)

    Article  Google Scholar 

  16. Horng, M.-H., Kuok, C.-P., Fu, M.-J., Lin, C.-J., Sun, Y.-N.: Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. 2019, article ID 6357171, 18 p. (2019). https://doi.org/10.1155/2019/6357171

    Article  Google Scholar 

  17. Ebrahimi, S., Gajny, L., Skalli, W., Angelini, E.: Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 7(2), 132–144 (2019)

    Google Scholar 

  18. Jung, A.: imgaug (2017). https://github.com/aleju/imgaug

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors thank the ParisTech BiomecAM chair program, on subject-specific musculoskeletal modelling and in particular Société Générale and COVEA. The authors would also like to thank François Girinon for having initiated this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gajny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Skalli, W., Vergari, C., Angelini, E.D., Gajny, L. (2019). Automated Spinal Midline Delineation on Biplanar X-Rays Using Mask R-CNN. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2019. VipIMAGE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-32040-9_32

Download citation

Publish with us

Policies and ethics