Skip to main content

Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging

  • Chapter
  • First Online:
Book cover Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Rare earth-doped nanoparticles (RENPs) with emissions in near infrared (NIR) region hold great promise for in vivo optical bioimaging, as they possess distinguished advantages of having tunable narrow-band emissions in the biological windows (700–950 nm, NIR-I widow; 1000–1700 nm, NIR-II window), presenting long-lived luminescence lifetimes (up to milliseconds), allowing probing centimeter-deep tissues, and enabling imaging with absence of autofluorescence. In this chapter, we present two types of NIR-emitting RENPs (upconversion and downshifting) towards this regard. Alongside steady-state bioimaging, we also describe the use of time-gated technique to empower autofluorescence-free imaging and multiplexed imaging in the time domain. The existing problems and future thrusts of RENPs for in vivo optical imaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leblond F, Davis SC, Valdã©S PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98(1):77–94

    Article  CAS  Google Scholar 

  2. Quek CH, Leong KW (2012) Near-infrared fluorescent nanoprobes for in vivo optical imaging. Nano 2(2):92–112

    CAS  Google Scholar 

  3. Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth CM, Riman RE, Moghe PV (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4(3):1345–1346

    Google Scholar 

  4. Bashkatov AN, Genina ÉA, Kochubey VI, Tuchin VV (2005) Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm. Opt Spectrosc 99(5):836–842

    Article  CAS  Google Scholar 

  5. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  Google Scholar 

  6. Zonios G, Bykowski J, Kollias N (2001) Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Investig Dermatol 117(6):1452–1457

    Article  CAS  Google Scholar 

  7. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem 124(39):9956–9959

    Article  Google Scholar 

  8. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  Google Scholar 

  9. Pansare V, Hejazi S, Faenza W, Prud’Homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional Nano carriers. Chem Mater 24(5):812

    Article  CAS  Google Scholar 

  10. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  Google Scholar 

  11. Wang R, Li X, Zhou L, Zhang F (2015) Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed 53(45):12086–12090

    Article  CAS  Google Scholar 

  12. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841

    Article  CAS  Google Scholar 

  13. Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206

    Article  CAS  Google Scholar 

  14. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A 108(22):8943

    Article  Google Scholar 

  15. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):0010

    Article  CAS  Google Scholar 

  16. Zhang Y, Hong G, Chen G, Li F, Dai H, Wang Q (2016) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 12(2):464–464

    Google Scholar 

  17. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235–242

    Article  CAS  Google Scholar 

  18. Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano AX, Fan Q, Chew L (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269

    Article  CAS  Google Scholar 

  19. Ai X, Ho CJ, Aw J, Attia AB, Mu J, Wang Y, Wang X, Liu X, Chen H (2016) In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat Commun 7:10432

    Article  CAS  Google Scholar 

  20. Xiaomin L, Fan Z, Dongyuan Z (2015) Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev 44(6):1346–1378

    Article  Google Scholar 

  21. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185

    Article  Google Scholar 

  22. Sun LD, Wang YF, Yan CH (2014) Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc Chem Res 47(4):1001–1009

    Article  CAS  Google Scholar 

  23. Chen C, Li C, Shi Z (2016) Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv Sci 3(10):1600029

    Article  CAS  Google Scholar 

  24. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  25. Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH (2013) Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7(8):7200–7206

    Article  CAS  Google Scholar 

  26. Del RB, Villa I, Jaque D, Sanz-Rodríguez F (2016) In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 9(10):1059–1067

    Article  CAS  Google Scholar 

  27. Chen G, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J, Pandey RK, Agren H, Prasad PN (2012) (α-NaYbF4:tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280

    Article  CAS  Google Scholar 

  28. Shen J, Chen G, Ohulchanskyy TY, Kesseli SJ, Buchholz S, Li Z, Prasad PN, Han G (2013) Upconversion: tunable near infrared to ultraviolet Upconversion luminescence enhancement in (α-NaYF4:Yb,tm)/CaF2 Core/Shell nanoparticles for in situ real-time recorded biocompatible Photoactivation (small 19/2013). Small 9(19):3212–3212

    Article  CAS  Google Scholar 

  29. Zhang F, Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X (2018) Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew Chem Int Ed Engl 57(25):7518–7522

    Article  CAS  Google Scholar 

  30. Cheng XW, Pan Y, Yuan Z, Wang XW, Su WH, Yin LS, Xie XJ, Huang L (2018) Er3+ sensitized photon upconversion nanocrystals. Adv Funct Mater 28(22)

    Google Scholar 

  31. Bausá LE (2005) An introduction to the optical spectroscopy of inorganic solids. Wiley, pp 199–234

    Google Scholar 

  32. Saders BV, Albaroudi L, Mei CT, Riman RE (2013) Rare-earth doped particles with tunable infrared emissions for biomedical imaging. Opt Mater Express 3(5):566–573

    Article  CAS  Google Scholar 

  33. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8(11):3834

    Article  CAS  Google Scholar 

  34. Chen G, Ohulchanskyy TY, Liu S, Law WC, Wu F, Swihart MT, Ågren H, Prasad PN (2012) Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6(4):2969

    Article  CAS  Google Scholar 

  35. Rocha U, Kumar KU, Jacinto C, Villa I, Sanz-Rodríguez F, Juarranz A, Carrasco E, Veggel FCJMV, Bovero E (2014) Neodymium-doped LaF 3 nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6):1141–1154

    Article  CAS  Google Scholar 

  36. Qin QS, Zhang PZ, Sun LD, Shi S, Chen NX, Dong H, Zheng XY, Li LM, Yan CH (2017) Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging. Nanoscale 9(14):4660–4664

    Article  CAS  Google Scholar 

  37. Jiang X, Cao C, Feng W, Li F (2016) Nd3+-doped LiYF4 nanocrystals for bio-imaging in the second near-infrared window. J Mater Chem B 4(1):87–95

    Article  CAS  Google Scholar 

  38. Rosal BD, Pérezdelgado A, Misiak M, Bednarkiewicz A, Vanetsev AS, Orlovskii Y, Jovanović DJ, Dramićanin MD, Rocha U, Kumar KU (2015) Neodymium-doped nanoparticles for infrared fluorescence bioimaging: the role of the host. J Appl Phys 118(14):143104

    Article  CAS  Google Scholar 

  39. Cao C, Xue M, Zhu X, Yang P, Feng W, Li F (2017) Energy transfer highway in Nd(3+)-sensitized nanoparticles for efficient near-infrared bioimaging. ACS Appl Mater Interfaces 9(22):18540–18548

    Article  CAS  Google Scholar 

  40. Villa I, Vedda A, Cantarelli IX, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U (2015) 1.3 μm emitting SrF 2:Nd 3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res 8(2):649–665

    Article  CAS  Google Scholar 

  41. Shao W, Chen GY, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN (2016) Tunable narrow band emissions from dye-sensitized Core/Shell/Shell nanocrystals in the second near-infrared biological window. J Am Chem Soc 138(50):16192–16195

    Article  CAS  Google Scholar 

  42. Zhang KY, Qi Y, Wei H, Liu S, Qiang Z, Wei H (2018) Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev 118(4):1770–1839

    Article  CAS  Google Scholar 

  43. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  CAS  Google Scholar 

  44. Connally RE, Piper JA (2010) Time-gated luminescence microscopy. Ann N Y Acad Sci 1130(1):106–116

    Article  CAS  Google Scholar 

  45. Jin D (2011) Demonstration of true-color high-contrast microorganism imaging for terbium bioprobes. Cytometry 79A(5):392–397

    Article  Google Scholar 

  46. del Rosal B, Ortgies DH, Fernandez N, Sanz-Rodriguez F, Jaque D, Rodriguez EM (2016) Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater 28(46):10188–10193

    Article  CAS  Google Scholar 

  47. Abbasi AZ, Amin F, Niebling T, Friede S, Ochs M, Carregalromero S, Montenegro JM, Gil PR, Heimbrodt W, Parak WJ (2011) How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. ACS Nano 5(1):21

    Article  CAS  Google Scholar 

  48. Hoffmann K, Behnke T, Drescher D, Kneipp J, Reschgenger U (2013) Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS Nano 7(8):6674

    Article  CAS  Google Scholar 

  49. Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Reschgenger U (2009) Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal Chem 81(18):7807–7813

    Article  CAS  Google Scholar 

  50. Ortgies DH, Tan M, Ximendes EC, Del BR, Hu J, Xu L, Wang X, Martín ER, Jacinto C, Fernandez N (2018) Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12(5):4362–4368

    Article  CAS  Google Scholar 

  51. Zhang L, Hu H (2002) The effect of OH − on IR emission of Nd 3+, Yb 3+ and Er 3+ doped tetraphosphate glasses. J Phys Chem Solids 63(4):575–579

    Article  CAS  Google Scholar 

  52. Yan Y, Faber AJ, Waal HD (1995) Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J Non-Cryst Solids 181(3):283–290

    Article  CAS  Google Scholar 

  53. Arppe R, Hyppänen I, Perälä N, Peltomaa R, Kaiser M, Würth C, Christ S, Reschgenger U, Schäferling M, Soukka T (2015) Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 7(27):11746–11757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanying Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, M., Chen, G. (2020). Rare Earth-Doped Nanoparticles for Advanced In Vivo Near Infrared Imaging. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_4

Download citation

Publish with us

Policies and ethics