Skip to main content

NIR Autofluorescence: Molecular Origins and Emerging Clinical Applications

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

The intrinsic fluorescence of many biomolecules is the main source of background noise in fluorescence bioimaging. Autofluorescence is less significant in the near infrared (NIR) than in the visible, as fewer biological components emit in this spectral range. While this advantage has attracted interest for in vivo imaging of whole tissues, autofluorescence can still complicate the detection of exogenous contrast agents and reduce the signal-to-noise ratio of the resulting fluorescence images. However, NIR autofluorescence is not only a source of undesirable noise, but it also conveys information about the state of tissues that can be exploited for diagnostic purposes. In this chapter, we discuss the issue of NIR autofluorescence from both perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86

    Article  CAS  Google Scholar 

  2. Susaki Etsuo A, Ueda Hiroki R (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23(1):137–157

    Article  CAS  Google Scholar 

  3. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  4. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  Google Scholar 

  5. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    Article  CAS  Google Scholar 

  6. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589

    Article  CAS  Google Scholar 

  7. Sevick-Muraca E (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231

    Article  CAS  Google Scholar 

  8. Hong G, Antaris AL, Dai H (2017) Near infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  9. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723

    Article  CAS  Google Scholar 

  10. Hong G, Lee JC, Jha A, Diao S, Nakayama KH, Hou L, Doyle TC, Robinson JT, Antaris AL, Dai H, Cooke JP, Huang NF (2014) Near infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ Cardiovasc Imaging 7(3):517–525

    Article  Google Scholar 

  11. Ortgies DH, Tan M, Ximendes EC, del Rosal B, Hu J, Xu L, Wang X, Martín Rodríguez E, Jacinto C, Fernandez N, Chen G, Jaque D (2018) Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12(5):4362–4368

    Article  CAS  Google Scholar 

  12. Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F (2018) Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol 13:941–946

    Article  CAS  Google Scholar 

  13. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056

    Article  CAS  Google Scholar 

  14. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 115(17):4465–4470

    Article  CAS  Google Scholar 

  15. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235

    Article  CAS  Google Scholar 

  16. Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L (2018) A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun 9(1):1171

    Article  CAS  Google Scholar 

  17. Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47(1):555–606

    Article  CAS  Google Scholar 

  18. Chorvat D Jr, Chorvatova A (2009) Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys Lett 6(3):175–193

    Article  CAS  Google Scholar 

  19. Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291(2):175–197

    Article  CAS  Google Scholar 

  20. Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50(3):437–439

    Article  CAS  Google Scholar 

  21. Szöllösi J, Lockett SJ, Balázs M, Waldman FM (1995) Autofluorescence correction for fluorescence in situ hybridization. Cytometry 20(4):356–361

    Article  Google Scholar 

  22. Leavesley SJ, Annamdevula N, Boni J, Stocker S, Grant K, Troyanovsky B, Rich TC, Alvarez DF (2012) Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. J Biophotonics 5(1):67–84

    Article  CAS  Google Scholar 

  23. Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 58(4):2461

    Article  CAS  Google Scholar 

  24. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  Google Scholar 

  25. Institute ANS (2000) American national standard for safe use of laser. Laser Institute of America, Orlando, FL

    Google Scholar 

  26. Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, Zhang B, Cheng K, Kuo CJ, Dai H (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem 127(49):14971–14975

    Article  Google Scholar 

  27. Villa I, Vedda A, Cantarelli I, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U, Jacinto C, Carrasco E, Rodríguez F, Juarranz Á, del Rosal B, Ortgies D, Gonzalez P, Solé J, García D (2015) 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res 8(2):649–665

    Article  CAS  Google Scholar 

  28. del Rosal B, Benayas A (2018) Strategies to overcome autofluorescence in nanoprobe-driven in vivo fluorescence imaging. Small Methods 2(9):1800075

    Article  CAS  Google Scholar 

  29. Wang J, Ma Q, Hu X-X, Liu H, Zheng W, Chen X, Yuan Q, Tan W (2017) Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 11(8):8010–8017

    Article  CAS  Google Scholar 

  30. del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM (2016) Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater 28(46):10188–10193

    Article  CAS  Google Scholar 

  31. Park C-K, Cho H (2015) Improvement in tracing quantum dot-conjugated nanospheres for in vivo imaging by eliminating food autofluorescence. J Nanomater 16(1):289

    Google Scholar 

  32. Diao S, Hong G, Antaris AL, Blackburn JL, Cheng K, Cheng Z, Dai H (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8(9):3027–3034

    Article  CAS  Google Scholar 

  33. Bouccara S, Fragola A, Giovanelli E, Sitbon G, Lequeux N, Pons T, Loriette V (2014) Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection. J Biomed Opt 19(5):051208

    Article  CAS  Google Scholar 

  34. Koch M, Symvoulidis P, Ntziachristos V (2018) Tackling standardization in fluorescence molecular imaging. Nat Photonics 12:505–515

    Article  CAS  Google Scholar 

  35. Davies MA, Hogan MP (2001) Body-site variation of skin autofluorescence. Appl Spectrosc 55(11):1489–1494

    Article  CAS  Google Scholar 

  36. Delori F, Greenberg JP, Woods RL, Fischer J, Duncker T, Sparrow J, Smith RT (2011) Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 52(13):9379–9390

    Article  Google Scholar 

  37. Stanciu CE, Philpott MK, Bustamante EE, Kwon YJ, Ehrhardt CJ (2016) Analysis of red autofluorescence (650–670nm) in epidermal cell populations and its potential for distinguishing contributors to ‘touch’ biological samples. F1000Res 5:180

    Article  CAS  Google Scholar 

  38. Fryen A, Glanz H, Lohmann W, Dreyer T, Bohle RM (1997) Significance of autofluorescence for the optical demarcation of field cancerisation in the upper aerodigestive tract. Acta Otolaryngol 117(2):316–319

    Article  CAS  Google Scholar 

  39. Christensen J, Nørgaard L, Bro R, Engelsen SB (2006) Multivariate autofluorescence of intact food systems. Chem Rev 106(6):1979–1994

    Article  CAS  Google Scholar 

  40. Yuanlong Y, Yanming Y, Fuming L, Yufen L, Paozhong M (1987) Characteristic autofluorescence for cancer diagnosis and its origin. Lasers Surg Med 7(6):528–532

    Article  Google Scholar 

  41. Koenig K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4(1):17–40

    Article  CAS  Google Scholar 

  42. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  Google Scholar 

  43. Wolfbeis OS (1985) The fluorescence of organic natural products. In: Molecular luminescence spectroscopy methods and applications. Wiley, New York, pp 167–370

    Google Scholar 

  44. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5):2811–2825

    Article  CAS  Google Scholar 

  45. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I (2013) Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep 3:3432

    Article  Google Scholar 

  46. Lakowicz JR (2006) Protein fluorescence. In: Principles of fluorescence spectroscopy. Springer, Boston, pp 529–575

    Chapter  Google Scholar 

  47. Patková J, Vojtíšek M, Tůma J, Vožeh F, Knotková J, Šantorová P, Wilhelm J (2012) Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain. Exp Toxicol Pathol 64(1–2):51–56

    Article  CAS  Google Scholar 

  48. Verbunt RJ, Fitzmaurice MA, Kramer JR, Ratliff NB, Kittrell C, Taroni P, Cothren RM, Baraga J, Feld M (1992) Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery. Am Heart J 123(1):208–216

    Article  CAS  Google Scholar 

  49. Nandakumar N, Buzney S, Weiter JJ (2012) Lipofuscin and the principles of fundus autofluorescence: a review. In: Seminars in ophthalmology, vol 5–6. Taylor & Francis, Boca Raton, pp 197–201

    Google Scholar 

  50. Richards-Kortum R, Rava R, Baraga J, Fitzmaurice M, Kramer J, Feld M (1990) Survey of the UV and visible spectroscopic properties of normal and atherosclerotic human artery using fluorescence EEMS. In: Pratesi R (ed) Optronic techniques in diagnostic and therapeutic medicine. Springer Science & Business Media, Boston, pp 129–138

    Google Scholar 

  51. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  CAS  Google Scholar 

  52. Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9(2):48–52

    Article  CAS  Google Scholar 

  53. García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F, Becerril JM (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

    Article  CAS  Google Scholar 

  54. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  Google Scholar 

  55. Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Ecophysiology of photosynthesis. Springer, Berlin, Heidelberg, pp 49–70

    Chapter  Google Scholar 

  56. Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113:S67–S77

    Article  Google Scholar 

  57. Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. Photosynth Res 5(2):139–157

    Article  CAS  Google Scholar 

  58. Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42(1):313–349

    Article  CAS  Google Scholar 

  59. Schmuck G, Moya I (1994) Time-resolved chlorophyll fluorescence spectra of intact leaves. Remote Sens Environ 47(1):72–76

    Article  Google Scholar 

  60. Krasnovsky A, Kovalev YV (2014) Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochem Mosc 79(4):349–361

    Article  CAS  Google Scholar 

  61. Hartzler DA, Niedzwiedzki DM, Bryant DA, Blankenship RE, Pushkar Y, Savikhin S (2014) Triplet excited state energies and phosphorescence spectra of (bacterio) chlorophylls. J Phys Chem B 118(26):7221–7232

    Article  CAS  Google Scholar 

  62. Bhaumik S, DePuy J, Klimash J (2007) Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging. Lab Anim 36(8):40

    Article  Google Scholar 

  63. del Rosal Rabes B (2017) Nanomateriales para terapia e imagen en el infrarrojo. Dissertation, Universidad Autónoma de Madrid

    Google Scholar 

  64. Weagle G, Paterson PE, Kennedy J, Pottier R (1988) The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin. J Photochem Photobiol B 2(3):313–320

    Article  CAS  Google Scholar 

  65. Konig K, Kienle A, Boehncke W-H, Kaufmann R, Ruck A, Meier T, Steiner R (1994) Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation. Opt Eng 33(9):2945

    Article  Google Scholar 

  66. Holmes H, Kennedy J, Pottier R, Rossi F, Weagle G (1995) A recipe for the preparation of a rodent food that eliminates chlorophyll-based tissue fluorescence. J Photochem Photobiol B 29(2):199

    Article  Google Scholar 

  67. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1):9–23

    Article  CAS  Google Scholar 

  68. Inoue Y, Izawa K, Kiryu S, Tojo A, Ohtomo K (2008) Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol Imaging 7(1):7290

    Article  Google Scholar 

  69. Tseng J-C, Vasquez K, Peterson JD, Hopkinton M (2015) Optical imaging on the IVIS SpectrumCT system: general and technical considerations for 2D and 3D imaging. Technical note, pre-clinical in vivo imaging PerkinElmer, Inc, Waltham, MA

    Google Scholar 

  70. In vivo animal imaging diet considerations (2008) Application Note for Pearl Imager. LICOR Biosciences

    Google Scholar 

  71. Zeng H, MacAulay C, Palcic B, McLean DI (1995) Spectroscopic and microscopic characteristics of human skin autofluorescence emission. Photochem Photobiol 61(6):639–645

    Article  CAS  Google Scholar 

  72. Kollias N, Zonios G, Stamatas GN (2002) Fluorescence spectroscopy of skin. Vib Spectrosc 28(1):17–23

    Article  CAS  Google Scholar 

  73. Gillies R, Zonios G, Anderson RR, Kollias N (2000) Fluorescence excitation spectroscopy provides information about human skin in vivo. J Invest Dermatol 115(4):704–707

    Article  CAS  Google Scholar 

  74. Kozikowski S, Wolfram L, Alfano R (1984) Fluorescence spectroscopy of eumelanins. IEEE J Quantum Electron 20(12):1379–1382

    Article  Google Scholar 

  75. Gallas JM, Eisner M (1987) Fluorescence of melanin-dependence upon excitation wavelength and concentration. Photochem Photobiol 45(5):595–600

    Article  CAS  Google Scholar 

  76. Elleder M, Borovanský J (2001) Autofluorescence of melanins induced by ultraviolet radiation and near ultraviolet light. A histochemical and biochemical study. Histochem J 33(5):273–281

    Article  CAS  Google Scholar 

  77. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–594

    Article  CAS  Google Scholar 

  78. Zonios G, Dimou A, Bassukas I, Galaris D, Tsolakidis A, Kaxiras E (2008) Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J Biomed Opt 13(1):014017

    Article  CAS  Google Scholar 

  79. Capozzi V, Perna G, Gallone A, Biagi P, Carmone P, Fratello A, Guida G, Zanna P, Cicero R (2005) Raman and optical spectroscopy of eumelanin films. J Mol Struct 744:717–721

    Article  CAS  Google Scholar 

  80. Nighswander-Rempel SP, Riesz J, Gilmore J, Meredith P (2005) A quantum yield map for synthetic eumelanin. J Chem Phys 123(19):194901

    Article  CAS  Google Scholar 

  81. d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem Int Ed 48(22):3914–3921

    Article  CAS  Google Scholar 

  82. Huang Z, Zeng H, Hamzavi I, Alajlan A, Tan E, McLean DI, Lui H (2006) Cutaneous melanin exhibiting fluorescence emission under near-infrared light excitation. J Biomed Opt 11(3):034010

    Article  CAS  Google Scholar 

  83. Huang Z, Lui H, Chen X, Alajlan A, McLean DI, Zeng H (2004) Raman spectroscopy of in vivo cutaneous melanin. J Biomed Opt 9(6):1198–1205

    Article  CAS  Google Scholar 

  84. del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F (2016) In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 9(10):1059–1067

    Article  CAS  Google Scholar 

  85. Malencik D, Anderson S (2003) Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 25(3–4):233–247

    Article  CAS  Google Scholar 

  86. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2(1–2):89–117

    Article  CAS  Google Scholar 

  87. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632

    Article  CAS  Google Scholar 

  88. Demos SG, Gandour-Edwards R, Ramsamooj R, de Vere WR (2004) Near infrared autofluorescence imaging for detection of cancer. J Biomed Opt 9(3):587–593

    Article  Google Scholar 

  89. Zhang G, Demos S, Alfano R (1999) Far-red and NIR spectral wing emission from tissues under 532 and 632 nm photo-excitation. Lasers Life Sci 9(1):1–16

    Google Scholar 

  90. Demos SG, Staggs MC, Gandour-Edwards R, Ramsamooj R, de Vere White R (2002) Tissue imaging for cancer detection using NIR autofluorescence. In: Optical biopsy IV, 2002. International Society for Optics and Photonics, pp 31–35

    Google Scholar 

  91. Demos SG, Bold R, White RV, Ramsamooj R (2005) Investigation of near-infrared autofluorescence imaging for the detection of breast cancer. IEEE J Sel Top Quantum Electron 11(4):791–798

    Article  CAS  Google Scholar 

  92. Fournier LS, Lucidi V, Berejnoi K, Miller T, Demos SG, Brasch RC (2006) In-vivo NIR autofluorescence imaging of rat mammary tumors. Opt Express 14(15):6713–6723

    Article  Google Scholar 

  93. Han X, Lui H, McLean DI, Zeng H (2009) Near infrared autofluorescence imaging of cutaneous melanins and human skin in vivo. J Biomed Opt 14(2):024017

    Article  CAS  Google Scholar 

  94. Wang S, Zhao J, Lui H, He Q, Zeng H (2013) In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results. Skin Res Technol 19(1):20–26

    Article  Google Scholar 

  95. Khristoforova YA, Bratchenko IA, Artemyev DN, Myakinin OO, Kozlov SV, Moryatov AA, Zakharov VP (2015) Method of autofluorescence diagnostics of skin neoplasms in the near infrared region. J Biomed Photonics Eng 1(3)

    Google Scholar 

  96. Khristoforova Y, Bratchenko I, Artemyev D, Myakinin O, Moryatov A, Kozlov S, Zakharov VP (2016) NIR autofluorescence skin tumor diagnostics. In: Laser Optics (LO), 2016 International Conference. IEEE, pp S2–17

    Google Scholar 

  97. Bratchenko IA, Artemyev DN, Myakinin OO, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP (2017) Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions. J Biomed Opt 22(2):027005

    Article  Google Scholar 

  98. Demos SG, Gandour-Edwards R, Ramsamooj R, de Vere WR (2004) Spectroscopic detection of bladder cancer using near-infrared imaging techniques. J Biomed Opt 9(4):767–712

    Article  Google Scholar 

  99. Lieber CA, Kabeer MH (2010) Characterization of pediatric Wilms’ tumor using Raman and fluorescence spectroscopies. J Pediatr Surg 45(3):549–554

    Article  Google Scholar 

  100. Jacobson MC, deVere White RW, Demos SG (2012) In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer. J Biomed Opt 17(3):036011

    Article  Google Scholar 

  101. Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, So JBY, Huang Z (2011) Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer. Biosens Bioelectron 26(10):4104–4110

    Article  CAS  Google Scholar 

  102. Shao X, Zheng W, Huang Z (2011) In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling. J Biomed Opt 16(6):067005

    Article  CAS  Google Scholar 

  103. Shao X, Zheng W, Huang Z (2011) Near infrared autofluorescence spectroscopy for in vivo identification of hyperplastic and adenomatous polyps in the colon. Biosens Bioelectron 30(1):118–122

    Article  CAS  Google Scholar 

  104. Nguyen JQ, Gowani Z, O’Connor M, Pence I, Holt G, Mahadevan-Jansen A (2015) Near infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas. Opt Lett 40(23):5498–5501

    Article  Google Scholar 

  105. Fleckenstein M, Schmitz-Valckenberg S, Holz F (2010) Fundus autofluorescence imaging in clinical use. Rev Ophthalmol, August Issue

    Google Scholar 

  106. Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385(1):28–40

    Article  CAS  Google Scholar 

  107. Skondra D, Papakostas TD, Hunter R, Vavvas DG (2012) Near infrared autofluorescence imaging of retinal diseases. In: Seminars in ophthalmology, vol 5–6. Taylor & Francis, Boca Raton, pp 202–208

    Google Scholar 

  108. Piccolino FC, Borgia L, Zinicola E, Iester M, Torrielli S (1996) Pre-injection fluorescence in indocyanine green angiography. Ophthalmology 103(11):1837–1845

    Article  CAS  Google Scholar 

  109. Keilhauer CN, Delori FC (2006) Near infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47(8):3556–3564

    Article  Google Scholar 

  110. Weinberger AW, Lappas A, Kirschkamp T, Mazinani BA, Huth JK, Mohammadi B, Walter P (2006) Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci 47(7):3098–3108

    Article  Google Scholar 

  111. Gibbs D, Cideciyan AV, Jacobson SG, Williams DS (2009) Retinal pigment epithelium defects in humans and mice with mutations in MYO7A: imaging melanosome-specific autofluorescence. Invest Ophthalmol Vis Sci 50(9):4386–4393

    Article  Google Scholar 

  112. Ayata A, Tatlipinar S, Kar T, Unal M, Ersanli D, Bilge AH (2008) Near infrared and short-wavelength autofluorescence imaging in central serous chorioretinopathy. Br J Ophthalmol 93(1):79–82

    Article  Google Scholar 

  113. Kellner U, Kellner S, Weinitz S (2010) Fundus autofluorescence (488 nm) and near-infrared autofluorescence (787 nm) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Retina 30(1):6–15

    Article  Google Scholar 

  114. Pilotto E, Vujosevic S, Melis R, Convento E, Sportiello P, Alemany-Rubio E, Segalina S, Midena E (2011) Short wavelength fundus autofluorescence versus near-infrared fundus autofluorescence, with microperimetric correspondence, in patients with geographic atrophy due to age-related macular degeneration. Br J Ophthalmol 95(8):1140–1144

    Article  Google Scholar 

  115. Schmitz-Valckenberg S, Lara D, Nizari S, Normando EM, Guo L, Wegener AR, Tufail A, Fitzke FW, Holz FG, Cordeiro MF (2010) Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging. Br J Ophthalmol 95(8):1134–1139

    Article  Google Scholar 

  116. Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, Zernant J (2015) Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci 56(8):5029–5039

    Article  Google Scholar 

  117. Koizumi H, Maruyama K, Kinoshita S (2010) Blue light and near-infrared fundus autofluorescence in acute Vogt–Koyanagi–Harada disease. Br J Ophthalmol 94:1499–1505

    Article  Google Scholar 

  118. Keilhauer CN, Delori FC (2010) Near infrared autofluorescence imaging. In: Holz FG, Spaide R (eds) Medical retina: focus on retinal imaging. Springer, Berlin, Heidelberg, pp 69–76

    Chapter  Google Scholar 

  119. Ayata A, Tatlıpınar S, Ünal M, Erşanlı D, Bilge AH (2008) Autofluorescence and OCT features of Bietti’s crystalline dystrophy. Br J Ophthalmol 92(5):718–720

    Article  CAS  Google Scholar 

  120. Applewhite MK, White MG, Xiong M, Pasternak JD, Abdulrasool L, Ogawa L, Suh I, Gosnell JE, Kaplan EL, Duh Q-Y, Angelos P, Shen WT, Grogan RH (2016) Incidence, risk factors, and clinical outcomes of incidental parathyroidectomy during thyroid surgery. Ann Surg Oncol 23(13):4310–4315

    Article  Google Scholar 

  121. Chen H, Wang TS, Yen TW, Doffek K, Krzywda E, Schaefer S, Sippel RS, Wilson SD (2010) Operative failures after parathyroidectomy for hyperparathyroidism: the influence of surgical volume. Ann Surg 252(4):691–695

    Google Scholar 

  122. Ahuja AT, Wong KT, Ching ASC, Fung MK, Lau JYW, Yuen EHY, King AD (2004) Imaging for primary hyperparathyroidism—what beginners should know. Clin Radiol 59(11):967–976

    Article  CAS  Google Scholar 

  123. Mohebati A, Shaha AR (2012) Imaging techniques in parathyroid surgery for primary hyperparathyroidism. Am J Otolaryngol 33(4):457–468

    Article  Google Scholar 

  124. Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R (1998) The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg 228(3):320–330

    Article  CAS  Google Scholar 

  125. Sommerey S, Al Arabi N, Ladurner R, Chiapponi C, Stepp H, Hallfeldt KK, Gallwas JK (2015) Intraoperative optical coherence tomography imaging to identify parathyroid glands. Surg Endosc 29(9):2698–2704

    Article  Google Scholar 

  126. Ladurner R, Hallfeldt KK, Al Arabi N, Stepp H, Mueller S, Gallwas JK (2013) Optical coherence tomography as a method to identify parathyroid glands. Lasers Surg Med 45(10):654–659

    Article  Google Scholar 

  127. Conti de Freitas LC, Phelan E, Liu L, Gardecki J, Namati E, Warger WC, Tearney GJ, Randolph GW (2014) Optical coherence tomography imaging during thyroid and parathyroid surgery: a novel system of tissue identification and differentiation to obviate tissue resection and frozen section. Head Neck 36(9):1329–1334

    Google Scholar 

  128. Schols RM, Bouvy ND, Wieringa FP, Alic L, Stassen LPS (2013) Diffuse optical reflectance spectrometry in thyroid and parathyroid surgery. In: 21st International Congress of the European Association for Endoscopic Surgery, Vienna

    Google Scholar 

  129. Tummers QR, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJ, Vahrmeijer AL (2015) Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose methylene blue. Surgery 158(5):1323–1330

    Article  Google Scholar 

  130. Antakia R, Gayet P, Guillermet S, Stephenson TJ, Brown NJ, Harrison BJ, Balasubramanian SP (2014) Near infrared fluorescence imaging of rabbit thyroid and parathyroid glands. J Surg Res 192(2):480–486

    Article  Google Scholar 

  131. Hyun H, Park MH, Owens EA, Wada H, Henary M, Handgraaf HJM, Vahrmeijer AL, Frangioni JV, Choi HS (2015) Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med 21(2):192–197

    Article  CAS  Google Scholar 

  132. Paras CA (2012) A novel optical approach to the intraoperative detection of parathyroid glands Thesis, Vanderbilt University

    Google Scholar 

  133. Paras C, Keller M, White L, Phay J, Mahadevan-Jansen A (2011) Near infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt 16(6):067012

    Article  Google Scholar 

  134. McWade MA, Paras C, White LM, Phay JE, Mahadevan-Jansen A, Broome JT (2013) A novel optical approach to intraoperative detection of parathyroid glands. Surgery 154(6):1371–1377

    Article  Google Scholar 

  135. McWade MA, Sanders ME, Broome JT, Solórzano CC, Mahadevan-Jansen A (2016) Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery 159(1):193–203

    Article  Google Scholar 

  136. De Leeuw F, Breuskin I, Abbaci M, Casiraghi O, Mirghani H, Ben Lakhdar A, Laplace-Builhé C, Hartl D (2016) Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: a feasibility study. World J Surg 40(9):2131–2138

    Article  Google Scholar 

  137. McWade MA, Paras C, White LM, Phay JE, Solórzano CC, Broome JT, Mahadevan-Jansen A (2014) Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J Clin Endocrinol Metab 99(12):4574–4580

    Article  CAS  Google Scholar 

  138. McWade M, Pence IJ, Paras C, Mahadevan-Jansen A (2015) Imaging system design for surgical guidance with near-infrared autofluorescence. In: Advanced biomedical and clinical diagnostic and surgical guidance systems XIII. International Society for Optics and Photonics, p 931303

    Google Scholar 

  139. Falco J, Dip F, Quadri P, de la Fuente M, Rosenthal R (2016) Cutting edge in thyroid surgery: autofluorescence of parathyroid glands. J Am Coll Surg 223(2):374–380

    Article  Google Scholar 

  140. Ladurner R, Sommerey S, Arabi NA, Hallfeldt KKJ, Stepp H, Gallwas JKS (2017) Intraoperative near-infrared autofluorescence imaging of parathyroid glands. Surg Endosc 31(8):3140–3145

    Article  Google Scholar 

  141. Benmiloud F, Rebaudet S, Varoquaux A, Penaranda G, Bannier M, Denizot A (2018) Impact of autofluorescence-based identification of parathyroids during total thyroidectomy on postoperative hypocalcemia: a before and after controlled study. Surgery 163(1):23–30

    Article  Google Scholar 

  142. Chotalia R, Bloxham R, McIntyre C, Tolley N, Palazzo F (2017) Can near infrared autofluorescent imaging prevent inadvertent parathyroidectomy? A pilot study. Eur J Surg Oncol 43(12):2385

    Google Scholar 

  143. Kahramangil B, Berber E (2017) The use of near-infrared fluorescence imaging in endocrine surgical procedures. J Surg Oncol 115(7):848–855

    Article  Google Scholar 

  144. Kim SW, Lee HS, Lee KD (2017) Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surg 6(5):516

    Article  Google Scholar 

  145. Ladurner R, Al Arabi N, Guendogar U, Hallfeldt K, Stepp H, Gallwas J (2017) Near infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery. Ann R Coll Surg Engl 100(1):1–4

    Google Scholar 

  146. Shinden Y, Nakajo A, Arima H, Tanoue K, Hirata M, Kijima Y, Maemura K, Natsugoe S (2017) Intraoperative identification of the parathyroid gland with a fluorescence detection system. World J Surg 41(6):1506–1512

    Article  Google Scholar 

  147. Alesina P, Meier B, Hinrichs J, Mohmand W, Walz M (2018) Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbeck’s Arch Surg 403(3):395–401

    Article  CAS  Google Scholar 

  148. Kim Y, Kim SW, Lee KD, Y-c A (2018) Real-time localization of the parathyroid gland in surgical field using raspberry pi during thyroidectomy: a preliminary report. Biomed Opt Express 9(7):3391–3398

    Article  CAS  Google Scholar 

  149. Thomas G, McWade MA, Paras C, Mannoh EA, Sanders ME, White LM, Broome JT, Phay JE, Baregamian N, Solorzano CC (2018) Developing a clinical prototype to guide surgeons for intraoperative label-free identification of parathyroid glands in real-time. Thyroid 28(11):1517–1531

    Article  CAS  Google Scholar 

  150. Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK, Hochman JS, Krumholz HM, Lamas GA, Mullany CJ (2008) 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction. Circulation 117(2):296–329

    Article  Google Scholar 

  151. Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Räber L (2016) Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J 37(6):524–535

    Article  Google Scholar 

  152. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1):113–119

    Article  Google Scholar 

  153. Calfon MA, Rosenthal A, Mallas G, Mauskapf A, Nudelman RN, Ntziachristos V, Jaffer FA (2011) In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis. J Vis Exp 54:e2257

    Google Scholar 

  154. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3(84):84ra45–84ra45

    Article  CAS  Google Scholar 

  155. Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh W-Y, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence–emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7(4):560–569

    Article  CAS  Google Scholar 

  156. Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, Vacas-Jacques P, Rosenberg M, Jaffer FA, Tearney GJ (2016) Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging 9(11):1304–1314

    Article  Google Scholar 

  157. Gardecki JA, Chau AH, Tearney GJ (2009) Report on ex vivo Raman database studies. Prescient Medical Inc. and The General Hospital Corporation, Boston

    Google Scholar 

  158. Wang H, Gardecki JA, Ughi GJ, Jacques PV, Hamidi E, Tearney GJ (2015) Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express 6(4):1363–1375

    Article  Google Scholar 

  159. Htun NM, Chen YC, Lim B, Schiller T, Maghzal GJ, Huang AL, Elgass KD, Rivera J, Schneider HG, Wood BR, Stocker R, Peter K (2017) Near infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat Commun 8(1):75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca del Rosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Rosal, B., Thomas, G., Mahadevan-Jansen, A., Stoddart, P.R. (2020). NIR Autofluorescence: Molecular Origins and Emerging Clinical Applications. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_2

Download citation

Publish with us

Policies and ethics