Skip to main content

Near Infrared Ag2S Quantum Dots: Synthesis, Functionalization, and In Vivo Stem Cell Tracking Applications

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Near infrared fluorescent semiconductor quantum dots (QDs) have become one of the most widely used nanoprobes in biomedical imaging researches due to their high optical and chemical stability, tunable emission, and the ability to image multiple targets. In particular, the recently developed Ag2S QDs emitting in the second near infrared window (NIR-II, 1000–1700 nm) have significantly improved the tissue penetration depth, sensitivity, temporal resolution, and spatial resolution of QD-based fluorescence imaging because of the minimal absorption and scattering of NIR-II light in tissues. Thus, the Ag2S QD-based fluorescence imaging has been successfully applied in numerous biomedical studies including in vivo stem cell tracking. In this chapter, we introduce methods for synthesis of photoluminescent Ag2S QDs, summarize the surface functionalization strategies for preparing highly stable and cell-targeting Ag2S QDs, and systematically illustrate the applications of Ag2S QDs in stem cell tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ald:

Alendronate

CT:

Computed tomography

DHLA:

Dihydrolipoic acid

EDC:

Ethyl(dimethylaminopropyl) carbodiimide

FA:

Folate

FBS:

Fetal bovine serum

GSH:

Reduced glutathione

HNSs:

Heteronanostructures

HRTEM:

High-resolution transmission electron microscopy

HuNu:

Anti-human nuclear antigen antibody

ICG:

Indocyanine green

2MPA:

2-mercaptopropionic acid

MSCs:

Mesenchymal stem cells

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NHS:

N-hydroxysuccinimide

NIRFI:

Near infrared fluorescence imaging

NIR-II:

The second near infrared window

NPs:

Nanoparticles

OA:

Oleic acid

ODA:

Octadecylamine

ODE:

1-octadecane

PA:

Photoacoustic

PBS:

Phosphate-buffered saline

PEG:

Poly(ethylene glycol)

PEI:

Polyethylene imine

PET:

Positron emission tomography

QDs:

Quantum dots

QDSSCs:

Quantum dot-sensitized solar cells

QY:

Quantum yield

RES:

Reticuloendothelial system

RfLuc:

Red-emitting firefly luciferase

RGD:

Cyclic arginine-glycine-aspartic acid peptide

RNase A:

Ribonuclease-A

ROS:

Reactive oxygen species

SDF-1α:

Stromal cell-derived factor-1α

TEM:

Transmission electron microscopy

TNAs:

Titanium dioxide nanotube arrays

UCNPs:

Upconversion nanoparticles

XANES:

X-ray absorption near-edge structure

References

  1. Hong GS, Antaris AL, Dai HJ (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):0010. https://doi.org/10.1038/s41551-016-0010

    Article  CAS  Google Scholar 

  2. Kim D, Lee N, Park YI, Hyeon T (2017) Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles. Bioconjug Chem 28(1):115–123. https://doi.org/10.1021/acs.bioconjchem.6b00654

    Article  CAS  Google Scholar 

  3. Zhao P, Xu Q, Tao J, Jin Z, Pan Y, Yu C, Yu Z (2018) Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(3):e1483. https://doi.org/10.1002/wnan.1483

    Article  Google Scholar 

  4. Gui RJ, Jin H, Wang ZH, Tan LJ (2015) Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coordin Chem Rev 296:91–124. https://doi.org/10.1016/j.ccr.2015.03.023

    Article  CAS  Google Scholar 

  5. van Veggel FCJM (2014) Near-infrared quantum dots and their delicate synthesis, challenging characterization, and exciting potential applications. Chem Mater 26(1):111–122. https://doi.org/10.1021/cm4021436

    Article  CAS  Google Scholar 

  6. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 51(39):9818–9821. https://doi.org/10.1002/anie.201206059

    Article  CAS  Google Scholar 

  7. Chen J, Kong YF, Wang W, Fang HW, Wo Y, Zhou DJ, Wu ZY, Li YX, Chen SY (2016) Direct water-phase synthesis of lead sulfide quantum dots encapsulated by beta-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem Commun 52(21):4025–4028. https://doi.org/10.1039/c6cc00099a

    Article  CAS  Google Scholar 

  8. Tan TT, Selvan ST, Zhao L, Gao SJ, Ying JY (2007) Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots. Chem Mater 19(13):3112–3117. https://doi.org/10.1021/cm061974e

    Article  CAS  Google Scholar 

  9. Goswami N, Giri A, Kar S, Bootharaju MS, John R, Xavier PL, Pradeep T, Pal SK (2012) Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing. Small 8(20):3175–3184. https://doi.org/10.1002/smll.201200760

    Article  CAS  Google Scholar 

  10. Keuleyan S, Lhuillier E, Guyot-Sionnest P (2011) Synthesis of colloidal HgTe quantum dots for narrow Mid-IR emission and detection. J Am Chem Soc 133(41):16422–16424. https://doi.org/10.1021/ja2079509

    Article  CAS  Google Scholar 

  11. Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25(12):2503–2509. https://doi.org/10.1021/cm400812v

    Article  CAS  Google Scholar 

  12. Du YP, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang QB (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132(5):1470–1471. https://doi.org/10.1021/ja909490r

    Article  CAS  Google Scholar 

  13. Lu CH, Chen GH, Yu B, Cong HL (2018) Recent advances of low biological toxicity Ag2S QDs for biomedical application. Adv Eng Mater 20(6):1700940. https://doi.org/10.1002/adem.201700940

    Article  CAS  Google Scholar 

  14. Yang M, Gui RJ, Jin H, Wang ZH, Zhang FF, Xia JF, Bi S, Xia YZ (2015) Ag2Te quantum dots with compact surface coatings of multivalent polymers: ambient one-pot aqueous synthesis and the second near-infrared bioimaging. Colloid Surface B 126:115–120. https://doi.org/10.1016/j.colsurfb.2014.11.030

    Article  CAS  Google Scholar 

  15. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5):3695–3702. https://doi.org/10.1021/nn301218z

    Article  CAS  Google Scholar 

  16. Zhang Y, Liu Y, Li C, Chen X, Wang Q (2014) Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton bohr radius. J Phys Chem C 118(9):4918–4923. https://doi.org/10.1021/jp501266d

    Article  CAS  Google Scholar 

  17. Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW (2016) Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J Am Chem Soc 138(6):1893–1903. https://doi.org/10.1021/jacs.5b10340

    Article  CAS  Google Scholar 

  18. Aharoni A, Mokari T, Popov I, Banin U (2006) Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. J Am Chem Soc 128(1):257–264. https://doi.org/10.1021/ja056326v

    Article  CAS  Google Scholar 

  19. Xie RG, Peng XG (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131(30):10645–10651. https://doi.org/10.1021/ja903558r

    Article  CAS  Google Scholar 

  20. Kim SE, Zhang L, Ma K, Riegman M, Chen F, Ingold I, Conrad M, Turker MZ, Gao MH, Jiang XJ, Monette S, Pauliah M, Gonen M, Zanzonico P, Quinn T, Wiesner U, Bradbury MS, Overholtzer M (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11(11):977–985. https://doi.org/10.1038/nnano.2016.164

    Article  CAS  Google Scholar 

  21. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336. https://doi.org/10.1038/Nmat2398

    Article  CAS  Google Scholar 

  22. Ma N, Marshall AF, Rao JH (2010) Near-infrared light emitting luciferase via biomineralization. J Am Chem Soc 132(20):6884–6885. https://doi.org/10.1021/ja101378g

    Article  CAS  Google Scholar 

  23. Du H, Chen CL, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2(11):1321–1324

    Article  CAS  Google Scholar 

  24. Jin H, Gui RJ, Sun J, Wang YF (2016) Glycerol-regulated facile synthesis and targeted cell imaging of highly luminescent Ag2Te quantum dots with tunable near-infrared emission. Colloid Surface B 143:118–123. https://doi.org/10.1016/j.colsurfb.2016.03.030

    Article  CAS  Google Scholar 

  25. Hwang I, Seol M, Kim H, Yong K (2013) Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Appl Phys Lett 103(2):023902. https://doi.org/10.1063/1.4813445

  26. Liu X, Liu Z, Lu J, Wu X, Chu W (2014) Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfurization for photocatalytic hydrogen production. J Colloid Interface Sci 413:17–23. https://doi.org/10.1016/j.jcis.2013.09.031

    Article  CAS  Google Scholar 

  27. Chen G, Tian F, Zhang Y, Zhang Y, Li C, Wang Q (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24(17):2481–2488. https://doi.org/10.1002/adfm.201303263

    Article  CAS  Google Scholar 

  28. Munari M, Sturve J, Frenzilli G, Sanders MB, Brunelli A, Marcomini A, Nigro M, Lyons BP (2014) Genotoxic effects of CdS quantum dots and Ag2S nanoparticles in fish cell lines (RTG-2). Mutat Res-Gen Tox En 775:89–93. https://doi.org/10.1016/j.mrgentox.2014.09.003

    Article  CAS  Google Scholar 

  29. Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34(14):3639–3646. https://doi.org/10.1016/j.biomaterials.2013.01.089

    Article  CAS  Google Scholar 

  30. Chen G, Tian F, Li C, Zhang Y, Weng Z, Zhang Y, Peng R, Wang Q (2015) In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 53:265–273. https://doi.org/10.1016/j.biomaterials.2015.02.090

    Article  CAS  Google Scholar 

  31. Hu F, Zhang Y, Chen G, Li C, Wang Q (2015) Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Small 11(8):985–993. https://doi.org/10.1002/smll.201401360

    Article  CAS  Google Scholar 

  32. Li C, Cao L, Zhang Y, Yi P, Wang M, Tan B, Deng Z, Wu D, Wang Q (2015) Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe. Small 11(35):4517–4525. https://doi.org/10.1002/smll.201500997

    Article  CAS  Google Scholar 

  33. Song C, Zhang Y, Li C, Chen G, Kang X, Wang Q (2016) Enhanced nanodrug delivery to solid tumors based on a tumor vasculature-targeted strategy. Adv Funct Mater 26(23):4192–4200. https://doi.org/10.1002/adfm.201600417

    Article  CAS  Google Scholar 

  34. Chen G, Lin S, Huang D, Zhang Y, Li C, Wang M, Wang Q (2018) Revealing the fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small 14(3):1702679. https://doi.org/10.1002/smll.201702679

    Article  CAS  Google Scholar 

  35. Brelle MC, Zhang JZ, Nguyen L, Mehra RK (1999) Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles. J Phys Chem A 103(49):10194–10201. https://doi.org/10.1021/jp991999j

    Article  CAS  Google Scholar 

  36. Jiang P, Tian ZQ, Zhu CN, Zhang ZL, Pang DW (2012) Emission-tunable near-infrared Ag2S quantum dots. Chem Mater 24(1):3–5. https://doi.org/10.1021/cm202543m

    Article  CAS  Google Scholar 

  37. Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20):5130–5135. https://doi.org/10.1016/j.biomaterials.2012.03.059

    Article  CAS  Google Scholar 

  38. Hocaoglu I, Cizmeciyan MN, Erdem R, Ozen C, Kurt A, Sennaroglu A, Acar HY (2012) Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J Mater Chem 22(29):14674–14681. https://doi.org/10.1039/c2jm31959d

    Article  CAS  Google Scholar 

  39. Gui RJ, Wan AJ, Liu XF, Yuan W, Jin H (2014) Water-soluble multidentate polymers compactly coating Ag2S quantum dots with minimized hydrodynamic size and bright emission tunable from red to second near-infrared region. Nanoscale 6(10):5467–5473. https://doi.org/10.1039/c4nr00282b

    Article  CAS  Google Scholar 

  40. Asik D, Yagci MB, Duman FD, Acar HY (2016) One step emission tunable synthesis of PEG coated Ag2S NIR quantum dots and the development of receptor targeted drug delivery vehicles thereof. J Mater Chem B 4(11):1941–1950. https://doi.org/10.1039/c5tb02599k

    Article  CAS  Google Scholar 

  41. Gui RJ, Sun J, Liu DX, Wang YF, Jin H (2014) A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window. Dalton T 43(44):16690–16697. https://doi.org/10.1039/c4dt00699b

    Article  CAS  Google Scholar 

  42. Tan LJ, Wan AJ, Li HL (2014) Synthesis of near-infrared quantum dots in cultured cancer cells. ACS Appl Mater Inter 6(1):18–23. https://doi.org/10.1021/am404534v

    Article  CAS  Google Scholar 

  43. Cao YT, Geng W, Shi R, Shang L, Waterhouse GIN, Liu LM, Wu LZ, Tung CH, Yin YD, Zhang TR (2016) Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew Chem Int Ed Engl 55(48):14952–14957. https://doi.org/10.1002/anie.201608019

    Article  CAS  Google Scholar 

  44. Liu JC, Raveendran P, Shervani Z, Ikushima Y (2004) Synthesis of Ag2S quantum dots in water-in-CO2 microemulsions. Chem Commun 22:2582–2583. https://doi.org/10.1039/b410700d

    Article  CAS  Google Scholar 

  45. Wu C, Zhang Y, Li Z, Li C, Wang Q (2016) A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 8(25):12531–12539. https://doi.org/10.1039/c6nr00060f

    Article  CAS  Google Scholar 

  46. Cui C, Li X, Liu J, Hou Y, Zhao Y, Zhong G (2015) Synthesis and functions of Ag2S nanostructures. Nanoscale Res Lett 10(1):431. https://doi.org/10.1186/s11671-015-1125-7

    Article  CAS  Google Scholar 

  47. Yang HY, Zhao YW, Zhang ZY, Xiong HM, Yu SN (2013) One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 24(5):055706. https://doi.org/10.1088/0957-4484/24/5/055706

    Article  CAS  Google Scholar 

  48. Shen S, Zhang Y, Peng L, Du Y, Wang Q (2011) Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew Chem Int Ed Engl 50(31):7115–7118. https://doi.org/10.1002/anie.201101084

    Article  CAS  Google Scholar 

  49. Shen SL, Zhang YJ, Liu YS, Peng L, Chen XY, Wang QB (2012) Manganese-doped Ag2S-ZnS heteronanostructures. Chem Mater 24(12):2407–2413. https://doi.org/10.1021/cm301342z

    Article  CAS  Google Scholar 

  50. Yang T, Tang YA, Liu L, Lv XY, Wang QL, Ke HT, Deng YB, Yang H, Yang XL, Liu G, Zhao YL, Chen HB (2017) Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 11(2):1848–1857. https://doi.org/10.1021/acsnano.6b07866

    Article  CAS  Google Scholar 

  51. Li S, Xu L, Sun M, Wu X, Liu L, Kuang H, Xu C (2017) Hybrid nanoparticle pyramids for intracellular dual microRNAs biosensing and bioimaging. Adv Mater 29(19):1606086. https://doi.org/10.1002/adma.201606086

    Article  CAS  Google Scholar 

  52. Tan LJ, Wan AJ, Li HL (2013) Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS Appl Mater Inter 5(21):11163–11171. https://doi.org/10.1021/am4034153

    Article  CAS  Google Scholar 

  53. Duman FD, Erkisa M, Khodadust R, Ari F, Ulukaya E, Acar HY (2017) Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine 12(19):2319–2333. https://doi.org/10.2217/nnm-2017-0180

    Article  CAS  Google Scholar 

  54. Jin H, Gui RJ, Gong J, Huang WX (2017) Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens Bioelectron 92:378–384. https://doi.org/10.1016/j.bios.2016.10.093

    Article  CAS  Google Scholar 

  55. Li CY, Zhang YJ, Wang M, Zhang Y, Chen GC, Li L, Wu DM, Wang QB (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1):393–400. https://doi.org/10.1016/j.biomaterials.2013.10.010

    Article  CAS  Google Scholar 

  56. Tang R, Xu B, Shen D, Sudlow G, Achilefu S (2018) Ultrasmall visible-to-near-infrared emitting silver-sulfide quantum dots for cancer detection and imaging. Proc of SPIE 10508:105080G. https://doi.org/10.1117/12.2300944

    Article  Google Scholar 

  57. Zhao DH, Yang J, Xia RX, Yao MH, Jin RM, Zhao YD, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54(5):527–530

    Article  CAS  Google Scholar 

  58. Tang R, Xue J, Xu B, Shen D, Sudlow GP, Achilefu S (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9(1):220–230. https://doi.org/10.1021/nn5071183

    Article  CAS  Google Scholar 

  59. Chen H, Li B, Zhang M, Sun K, Wang Y, Peng K, Ao M, Guo Y, Gu Y (2014) Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. Nanoscale 6(21):12580–12590. https://doi.org/10.1039/c4nr03613a

    Article  CAS  Google Scholar 

  60. Chen J, Zhang T, Feng L, Zhang M, Zhang X, Su H, Cui D (2013) Synthesis of Ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route. Mater Lett 96:224–227. https://doi.org/10.1016/j.matlet.2012.11.067

    Article  CAS  Google Scholar 

  61. Wang Y, Yan XP (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49(32):3324–3326. https://doi.org/10.1039/c3cc41141a

    Article  CAS  Google Scholar 

  62. Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q (2017) Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29(13):1605754. https://doi.org/10.1002/adma.201605754

    Article  CAS  Google Scholar 

  63. Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y (2018) Near-infrared fluorescent Ag2S nanodot-based signal amplification for efficient detection of circulating tumor cells. Anal Chem 90(11):6702–6709. https://doi.org/10.1021/acs.analchem.8b00514

    Article  CAS  Google Scholar 

  64. Cheng K, Yang XQ, Zhang XS, Chen J, An J, Song YY, Li C, Xuan Y, Zhang RY, Yang CH, Song XL, Zhao YD, Liu B (2018) High-security nanocluster for switching photodynamic combining photothermal and acid-induced drug compliance therapy guided by multimodal active-targeting imaging. Adv Funct Mater 28(36):1803118. https://doi.org/10.1002/adfm.201803118

    Article  CAS  Google Scholar 

  65. Zhang XS, Xuan Y, Yang XQ, Cheng K, Zhang RY, Li C, Tan F, Cao YC, Song XL, An J, Hou XL, Zhao YD (2018) A multifunctional targeting probe with dual-mode imaging and photothermal therapy used in vivo. J Nanobiotechnol 16(1):42. https://doi.org/10.1186/s12951-018-0367-9

    Article  CAS  Google Scholar 

  66. Tan LJ, Wan A, Li HL (2013) Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir 29(48):15032–15042. https://doi.org/10.1021/la403028j

    Article  CAS  Google Scholar 

  67. Li C, Li F, Zhang Y, Zhang W, Zhang XE, Wang Q (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9(12):12255–12263. https://doi.org/10.1021/acsnano.5b05503

    Article  CAS  Google Scholar 

  68. Hu F, Li CY, Zhang YJ, Wang M, Wu DM, Wang QB (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8(5):1637–1647. https://doi.org/10.1007/s12274-014-0653-2

    Article  CAS  Google Scholar 

  69. Yan D, He Y, Ge YL, Song GW (2017) Fluorescence “turn on-off” detection of heparin and heparinase I based on the near-infrared emission polyethyleneimine capped Ag2S quantum dots. Sensor Actuat B-Chem 240:863–869. https://doi.org/10.1016/j.snb.2016.09.058

    Article  CAS  Google Scholar 

  70. Wu Q, Zhou M, Shi J, Li Q, Yang M, Zhang Z (2017) Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal Chem 89(12):6616–6623. https://doi.org/10.1021/acs.analchem.7b00777

    Article  CAS  Google Scholar 

  71. Theodorou IG, Jawad ZAR, Qin H, Aboagye EO, Porter AE, Ryan MP, Xie F (2016) Significant metal enhanced fluorescence of Ag2S quantum dots in the second near-infrared window. Nanoscale 8(26):12869–12873. https://doi.org/10.1039/c6nr03220f

    Article  CAS  Google Scholar 

  72. Zhang X, Liu M, Liu H, Zhang S (2014) Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens Bioelectron 56:307–312. https://doi.org/10.1016/j.bios.2014.01.033

    Article  CAS  Google Scholar 

  73. Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898. https://doi.org/10.1002/stem.103

    Article  CAS  Google Scholar 

  74. Houlihan DD, Newsome PN (2008) Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 135(2):438–450. https://doi.org/10.1053/j.gastro.2008.05.040

    Article  CAS  Google Scholar 

  75. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YRV, Fang SCY, Yang VW, Lee OK (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134(7):2111–2121. https://doi.org/10.1053/j.gastro.2008.03.015

    Article  Google Scholar 

  76. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. https://doi.org/10.1038/nature10761

    Article  CAS  Google Scholar 

  77. Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 14(4):431–444. https://doi.org/10.1016/j.stem.2014.03.009

    Article  CAS  Google Scholar 

  78. Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q (2018) Recent advances in tracking the transplanted stem cells using near-infrared fluorescent nanoprobes: turning from the first to the second near-infrared window. Adv Healthc Mater 7(20):1800497. https://doi.org/10.1002/adhm.201800497

    Article  CAS  Google Scholar 

  79. Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688. https://doi.org/10.1038/nrclinonc.2011.141

    Article  CAS  Google Scholar 

  80. Yukawa H, Baba Y (2017) In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal Chem 89(5):2671–2681. https://doi.org/10.1021/acs.analchem.6b04763

    Article  CAS  Google Scholar 

  81. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  Google Scholar 

  82. Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y, Tokeshi M, Kaji N, Noguchi H, Ono K, Sawada M, Baba Y, Hamajima N, Hayashi S (2010) Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 31(14):4094–4103. https://doi.org/10.1016/j.biomaterials.2010.01.134

    Article  CAS  Google Scholar 

  83. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149. https://doi.org/10.5966/sctm.2011-0018

    Article  CAS  Google Scholar 

  84. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ (2018) Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359(6376):679–684. https://doi.org/10.1126/science.aaq1144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFA0101503, 2017YFA0205503), the Strategic Priority Research Program (Grant No. XDB32030200) and Youth Innovation Promotion Association Program from Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Grant No. 21778070, 21671198, 21425103, 21501192), the National Natural Science Foundation of Jiangsu Province (Grant BK20170066, BE2016682).

Author Contributions Statement G.C.C., Y.J.Z., C.Y.L., and Q.B.W. outlined the chapter, co-wrote the chapter manuscript, and made revisions to the content.

Competing Financial Interest(s) Disclosure The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Zhang, Y., Li, C., Wang, Q. (2020). Near Infrared Ag2S Quantum Dots: Synthesis, Functionalization, and In Vivo Stem Cell Tracking Applications. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_11

Download citation

Publish with us

Policies and ethics