Skip to main content

Artificial Neural Network Based Online Rockmass Behavior Classification of TBM Data

  • Conference paper
  • First Online:

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The tunnel boring machine (TBM) which is currently excavating the exploratory tunnel Ahrental-Pfons of the Brenner Base Tunnel records parameters like cutter head torque or advance pressure on a ten second interval. TBM data like this and derived indicators (e.g.: specific penetration, torque ratio…) are often used as additional help for assessing the response of the rockmass towards the excavation.

The goal of this paper is to explore the applicability of a special type of artificial neural network (ANN) for an automatic online classification of the rockmass behavior solely based on TBM data. An ensemble of Long Short Term Memory (LSTM) networks with additional one-dimensional convolutional layers on top, is used to classify individual features of TBM data in mini-batches. The 1D convolutional input layers enhance the ANN’s ability to extract significant features of the data.

After an experimental phase, the best performance was achieved with an ensemble of eight convolutional LSTM – networks, where four networks each were deployed on the features torque - ratio and torque. Although the final categorical classification of the ensemble only achieved an overall accuracy of 74.4%, the probabilistic, relative output still yields valuable information about the rockmass behavior and could be used to aid geotechnicians in a real-world scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Girmscheid, G.: Bauprozesse und Bauverfahren des Tunnelbaus, 3rd edn. Ernst & Sohn, Berlin (2013)

    Book  Google Scholar 

  2. Bergmeister, K., Reinhold, C.: Learning and optimization from the exploratory tunnel - Brenner Base Tunnel. Geomech. Tunn. (2017). https://doi.org/10.1002/geot.201700039

    Article  Google Scholar 

  3. Reinhold, C., Schwarz, C., Bergmeister, K.: Development of holistic prognosis models using exploration techniques and seismic prediction. Geomech. Tunn. (2017). https://doi.org/10.1002/geot.201700058

    Article  Google Scholar 

  4. Erharter, G.H., Marcher, T., Reinhold, C.: Comparison of artificial neural networks for TBM data classification. In: Fontoura, S.A.B. (ed.) Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019). Rock Mechanics for Natural Resources and Infrastructure Development. 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019), Foz de Iguassu, Brazil, 13–18 September 2019 (2019)

    Google Scholar 

  5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  6. Raschka, S.: Python Machine Learning. Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow. Community Experience Distilled. Packt Publishing, Birmingham (2017)

    Google Scholar 

  7. Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow. Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2017)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. http://arxiv.org/pdf/1412.6980v9 (2014)

  9. Teale, R.: The concept of specific energy in rock drilling. Int. J. Rock Mech. Min. Sci. Geomech. Abs. (1965). https://doi.org/10.1016/0148-9062(65)90016-1

    Article  Google Scholar 

  10. Radoncic, N., Hein, M., Moritz, B.: Determination of the system behaviour based on data analysis of a hard rock shield TBM/Analyse der Maschinenparameter zur Erfassung des Systemverhaltens beim Hartgesteins-Schildvortrieb. Geomechanik Tunnelbau (2014). https://doi.org/10.1002/geot.201400052

    Article  Google Scholar 

  11. Zhang, Q., Liu, Z., Tan, J.: Prediction of geological conditions for a tunnel boring machine using big operational data. Autom. Constr. (2019). https://doi.org/10.1016/j.autcon.2018.12.022

    Article  Google Scholar 

  12. Mahalanobis, P.C.: On the generalized distance in statistics. In: Proceedings of the National Institute of Sciences of India, pp. 49–55 (1936)

    Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp. 1–15. Springer, Heidelberg (2000)

    Google Scholar 

  14. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  15. Cherkauer, K.J.: Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Working Notes, Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms Workshop. Thirteenth National Conference on Artificial Intelligence, Portland. AAAI Press (1996)

    Google Scholar 

  16. Brownlee, J.: How to Reduce the Variance of Deep Learning Models in Keras Using Model Averaging Ensembles (2018). https://machinelearningmastery.com/model-averaging-ensemble-for-deep-learning-neural-networks/. Accessed 24 Mar 2019

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  18. Donahue, J., Hendricks, L.A., Rohrbach, M., Venugopalan, S., Guadarrama, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. http://arxiv.org/pdf/1411.4389v4 (2014)

  19. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting (2015)

    Google Scholar 

  20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Gordon, G., Dunson, D., Dudik, M. (eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323 (2011)

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2009)

    Google Scholar 

  23. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  24. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015). https://www.tensorflow.org/

  25. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower, G.H. (ed.) Psychology of Learning and Motivation, vol. 24, pp. 109–165. Academic Press (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg H. Erharter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erharter, G.H., Marcher, T., Reinhold, C. (2020). Artificial Neural Network Based Online Rockmass Behavior Classification of TBM Data. In: Correia, A., Tinoco, J., Cortez, P., Lamas, L. (eds) Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-32029-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32029-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32028-7

  • Online ISBN: 978-3-030-32029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics