Skip to main content

Biomechanics of Soft Tissues: The Role of the Mathematical Model on Material Behavior

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1066))

Abstract

Mechanical properties of the soft tissues and an accurate mathematical model are important to reproduce the soft tissue’s material behavior (mechanical behavior) in a virtual simulation. This type of simulations by Finite Element Analysis (FEA) is required to analyze injury mechanisms, vehicle accidents, airplane ejections, blast-related events, surgical procedures simulation and to develop and test surgical implants where is mandatory take into account the high strain-rate. This work aims to highlight the role of the hyperelastic models, which can be used to simulate the highly nonlinear mechanical behavior of soft tissues.

After a description of a set of formulations that can be defined as phenomenological models, a comparison between two models is discussed according to case study that represents a process of tissues clamping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wren, T., Carter, D.: A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J. Biomech. Eng. 120(1), 55–61 (1996)

    Article  Google Scholar 

  2. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer Science, New York (1993)

    Book  Google Scholar 

  3. Yamada, H.: Strength of Biological Materials, 1st edn. Williams & Wilkins, Baltimore (1970)

    Google Scholar 

  4. Marinozzi, F., Bini, F., Marinozzi, A., Zuppante, F., De Paolis, A., Pecci, R., Bedini, R.: Tecnique for bone volume measurement from human femur head samples by classification of micro-CT image histograms. Ann. I. Super. Sanità 49(3), 300–305 (2013)

    Google Scholar 

  5. Ottensmeyer, M., Kerdok, A., Howe, R., Dawson, L.: The effects of testing environment on the viscoelastic properties of soft tissues. In: Cotin, S., Metaxas, D. (eds.) Medical Simulation, ISMS 2004. Lecture Notes in Computer Science, vol. 3078, pp. 9–18. Springer, Heidelberg (2004)

    Google Scholar 

  6. Guachi, R., Bini, F., Bici, M., Campana, F., Marinozzi, F.: Finite element model set-up of colorectal tissue for analyzing surgical scenarios. In: Tavares, J., Natal Jorge, R. (eds.) VipIMAGE 2017. Lecture Notes in Computational Vision and Biomechanics, vol. 27, pp. 599–609. Springer, Cham (2017)

    Chapter  Google Scholar 

  7. Mayeur, O., Witz, J., Lecomte, P., Brieu, M., Cosson, M., Miller, K.: Influence of geometry and mechanical properties on the accuracy of patient-specific simulation of women pelvic floor. Ann. Biomed. Eng. 4(1), 202–212 (2016)

    Article  Google Scholar 

  8. Rubod, C., Brieu, M., Cosson, M., Rivaux, G., Clay, J.C., De Landsheere, L., Gabriel, B.: Biomechanical properties of human pelvic organs. Urology 79(4), 968.e17–968.e22 (2012)

    Article  Google Scholar 

  9. Chantereau, P., Brieu, M., Kammal, M., Farthmann, J., Gabriel, B., Cosson, M.: Mechanical properties of pelvic soft tissue of young women and impact of aging. Int. Urogynecol. J. 25(11), 1547–1553 (2014)

    Article  Google Scholar 

  10. Christensen, M., Oberg, K., Wolchok, J.: Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue. Springerplus 4(1), 142 (2015)

    Article  Google Scholar 

  11. Gao, C., Gregersen, H.: Biomechanical and morphological properties in rat large intestine. J. Biomech. 33(9), 1089–1097 (2000)

    Article  Google Scholar 

  12. Liao, D., Zhao, J., Gregersen, H.: 3D Mechanical properties of the partially obstructed guinea pig small intestine. J. Biomech. 43(11), 2079–2086 (2010)

    Article  Google Scholar 

  13. Shahzad, M., Kamran, A., Siddiqui, M.Z., Farhan, M.: Mechanical characterization and FE modelling of a hyperelastic material. Mater. Res. 18(5), 918–924 (2015)

    Article  Google Scholar 

  14. Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27(8), 995–1004 (2008)

    Article  Google Scholar 

  15. Chung, T.: General Continuum Mechanics, 2nd edn. Cambridge University Press, Huntsville (2007)

    Book  Google Scholar 

  16. Calvo-Gallego, J., Domínguez, J., Gómez Cía, T., Gómez Ciriza, G., Martínez-Reina, J.: Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study. J. Mech. Behav. Biomed. Mater. 80, 293–302 (2018)

    Article  Google Scholar 

  17. Guachi, R., Bici, M., Guachi, L., Campana, F., Bini, F., Marinozzi, F.: Geometrical modelling effects on FEA of colorectal surgery. Comput.-Aided Des. Appli. 16(4), 778–788 (2019)

    Article  Google Scholar 

  18. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    Article  Google Scholar 

  19. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82(9), 1183–1217 (2012)

    Article  Google Scholar 

  20. Thewlis, J.: Concise Dictionary of Physics, p. 248. Pergamon Press, Oxford (1973)

    Google Scholar 

  21. Broggiato, G., Campana, F., Cortese, L.: Parameter identification of a material damage model: inverse approach by the use of digital image processing. In: University of Parma/Ingegneria Industriale (eds.) 22nd Danubia-Adria Symposium on Experimental Methods in Solid Mechanics, DAS 2005, Parma, pp. 19–20 (2005)

    Google Scholar 

  22. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  Google Scholar 

  23. Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. Roy. Soc. Lond. Ser. 241(835), 379–397 (1948)

    Article  MathSciNet  Google Scholar 

  24. Hamza, M.N., Alwan, H.M.: Hyperelastic constitutive modeling of rubber and rubber- like materials under finite strain. Eng. Technol. J. 28(13), 2560–2575 (2010)

    Google Scholar 

  25. Martins, P., Jorge, R., Ferreira, A.: A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)

    Article  Google Scholar 

  26. Gent, A.: Engineering with Rubber, 2nd edn. Carl Hanser Verlag, Munich (2001)

    Google Scholar 

  27. Araneo, R., Bini, F., Rinaldi, A., Notargiacomo, A., Pea, M., Celozzi, S.: Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 26(26), 265402 (2015)

    Article  Google Scholar 

  28. Araneo, R., Rinaldi, A., Notargiacomo, A., Bini, F., Marinozzi, F., Pea, M., Lovat, G., Celozzi, S.: Effect of the scaling of the mechanical properties on the performances of ZnO Piezo-semiconductive nanowires. In: Nanoforum 2013 on AIP Conference Proceedings, vol. 1603, pp. 14–22. Rome (2014)

    Google Scholar 

  29. Elariny, H., González, H., Wang, B.: Tissue thickness of human stomach measured on excised gastric specimens from obese patients. Surg. Technol. Int. 14, 119–124 (2005)

    Google Scholar 

  30. Offodile, A., Feingold, D., Nasar, A., Whelan, R., Arnell, T.: High incidence of technical errors Involving the EEA circular stapler: a single institution experience. J. Am. Coll. Surg. 210(3), 331–335 (2010)

    Article  Google Scholar 

  31. Okano, K., Oshima, M., Kakinoki, K., Yamamoto, N., Akamoto, S., Yachida, S., Hagiike, M., Kamada, H., Masaki, T., Susuki, Y.: Pancreatic thickness as a predictive factor for postoperative pancreatic fistula after distal pancreatectomy using an endopath stapler. Surg. Today 43(2), 141–147 (2013)

    Article  Google Scholar 

  32. Kester, E., Rabe, U., Presmanes, L., Tailhades, T., Arnold, W.: Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12(5–8), 779–782 (1999)

    Article  Google Scholar 

  33. Egorov, V., Schastlivtsev, I., Prut, E., Baranov, A., Turusov, R.: Mechanical properties of the human gastrointestinal tract. J. Biomech. 35(10), 1417–1425 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Guachi-Guachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bustamante-Orellana, C. et al. (2020). Biomechanics of Soft Tissues: The Role of the Mathematical Model on Material Behavior. In: Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P. (eds) Advances in Emerging Trends and Technologies. ICAETT 2019. Advances in Intelligent Systems and Computing, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-030-32022-5_29

Download citation

Publish with us

Policies and ethics