Skip to main content

Observability for the Wave Equation with Variable Support in the Dirichlet and Neumann Cases

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 613))

  • 400 Accesses

Abstract

We study the observability of the wave equation when the observation set changes over time.

For the one dimensional Neumann problem, using Fourier series, we are able to prove for the exact observability an equivalent condition already known for the Dirichlet problem; see [1].

For the observability problem with Dirichlet boundary conditions, we focus on multidimensional problems and the observability inequality is proven through a multiplier approach.

Besides this, we present some applications and a numerical simulation.

D. Andreucci—Member of Italian G.N.F.M.-I.N.d.A.M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti A, Andreucci A, Loreti P (2017) Alternating and variable controls for the wave equation, to appear in ESAIM: COCV, dos: https://doi.org/10.1051/cocv/2019017

  2. Agresti A, Andreucci D, Loreti P (2018) Variable support control for the wave equation - a multiplier approach. In: Proceedings of the 15th international conference on informatics in control, automation and robotics - volume 1: ICINCO, INSTICC, SciTePress, pp 33–42. https://doi.org/10.5220/0006832600430052

  3. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30(5):1024–1065

    Article  MathSciNet  Google Scholar 

  4. Carcaterra A, Graziani G, Pepe G, Roveri N (2014) Cable oscillations in a streamflow: art in the Tiber. In: Cunha A, Caetano E, Ribeiro P, Müller G (eds) Proceedings of the 9th international conference on structural dynamics

    Google Scholar 

  5. Castro C, Micu S, Münch A (2008) Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J Numer Anal 28(1):186–214

    Article  MathSciNet  Google Scholar 

  6. Dessi D, Carcaterra A, Diodati G (2004) Experimental investigation versus numerical simulation of the dynamic response of a moored floating structure to waves. Proc Inst Mech Eng Part M: J Eng Marit Environ 218(3):153–165

    Article  Google Scholar 

  7. Evans LC, Gariepy RF (2015) Measure theory and fine properties of functions. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Glowinski R, Lions JL (1995) Exact and approximate controllability for distributed parameter systems. Acta Numer 4:159–328

    Article  MathSciNet  Google Scholar 

  9. Grisvard P (2011) Elliptic problems in nonsmooth domains, vol 69. SIAM, Philadelphia

    Book  Google Scholar 

  10. Komornik V (1994) Exact controllability and stabilization: the multiplier method, vol 36. Masson, Paris

    MATH  Google Scholar 

  11. Komornik V, Loreti P (2005) Fourier series in control theory. Springer, Heidelberg

    Book  Google Scholar 

  12. Lasiecka I, Triggiani R (1983) Regularity of hyperbolic equations under \({L^2(0, T; L^2(\Gamma ))}\)-Dirichlet boundary terms. Appl Math Optim 10(1):275–286

    Article  MathSciNet  Google Scholar 

  13. Le Rousseau J, Lebeau G, Terpolilli P, Trélat E (2017) Geometric control condition for the wave equation with a time-dependent observation domain. Anal PDE 10(4):983–1015

    Article  MathSciNet  Google Scholar 

  14. Lions JL (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. tome 1. RMA 8

    Google Scholar 

  15. Münch A (2005) A uniformly controllable and implicit scheme for the 1-\(\text{ D }\) wave equation. ESAIM: Math Model Numer Anal 39(2):377–418

    Article  MathSciNet  Google Scholar 

  16. Taylor M (2011) Partial differential equations I: basic theory. Applied mathematical sciences, vol 115

    Book  Google Scholar 

  17. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Springer, Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Agresti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agresti, A., Andreucci, D., Loreti, P. (2020). Observability for the Wave Equation with Variable Support in the Dirichlet and Neumann Cases. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. ICINCO 2018. Lecture Notes in Electrical Engineering, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-030-31993-9_3

Download citation

Publish with us

Policies and ethics