The Track Finder Demonstrator

  • Thomas Owen JamesEmail author
Part of the Springer Theses book series (Springer Theses)


Requirements and constraints are presented for a 40 MHz track finder at CMS for the High Luminosity LHC. A track finding system is proposed that exploits high bandwidth FPGA-based processing boards and a time-multiplexed data delivery approach. The design of a demonstrator slice built from currently available hardware is outlined; a series of optically daisy-chained MP7 processing cards running algorithms based on the Hough Transform and Kalman Filter methods.


  1. 1.
    CMS Collaboration (2015) Technical proposal for the Phase-II upgrade of the CMS detector, Jun 2015, technical report CERN-LHCC-2015-010Google Scholar
  2. 2.
    Hall G (2016) A time-multiplexed track-trigger for the CMS HL-LHC upgrade. Nucl Inst Meth A 824:292–295.
  3. 3.
    Amstutz C et al (2016) An FPGA-based track finder for the L1 trigger of the CMS experiment at the High Luminosity LHC, Jun 2016, IEEE-NPSS Real Time Conference, pp 1–9.
  4. 4.
    CMS Collaboration (2013) CMS technical design report for the Level-1 trigger upgrade, Jun 2013, technical report CERN-LHCC-2013-011Google Scholar
  5. 5.
    CMS Collaboration (2017) The Phase-2 upgrade of the CMS tracker, Jul 2017, technical report CERN-LHCC-2017-009Google Scholar
  6. 6.
    Ghabrous Larrea C et al (2015) IPbus: a flexible Ethernet-based control system for xTCA hardware. JINST 10: C02019.
  7. 7.
    Compton K et al (2012) The MP7 and CTP-6: multi-hundred Gbps processing boards for calorimeter trigger upgrades at CMS. JINST 7:C12024.
  8. 8.
    PICMG (2006) Micro Telecommunications Computing Architecture Short Form Specification, Sep 2006.
  9. 9.
    PICMG (2006) Advanced Mezzanine Card Short Form Specification, Dec 2006.
  10. 10.
    Di Cosmo M et al (2015) MicroTCA and AdvancedTCA equipment evaluation and customization for LHC experiments. JINST 10:C01008.
  11. 11.
    Xilinx Inc (2017) 7 series FPGAs data sheet: overview, Aug 2017, product specification, DS180 (v2.5)Google Scholar
  12. 12.
    Zabi A et al (2017) The CMS Level-1 trigger system for LHC Run II. JINST 12:C01065.
  13. 13.
    Xilinx (2008) CoolRunner-II CPLD family product specification, Sep 2008, DS090 (v3.1)
  14. 14.
    Avago Technologies (2013) MiniPOD AFBR-811VxyZ, AFBR-821VxyZ 10 Gbps/channel twelve Channel, parallel optics modules product brief, Mar 2013.
  15. 15.
    ATMEL Corporation (2012) 32-bit AVR Microcontroller Summary, 2012, 32072SH-A VR32-10/2012.
  16. 16.
    Iles G, Jones J, Rose A (2013) Experience powering Xilinx Virtex-7 FPGAs. JINST 8:C12037.
  17. 17.
    CACTUS: Code Archive for CMS Trigger Upgrades. Accessed Feb 2018.
  18. 18.
    Iles G, Hansen M, Gorski T, Hazen E (2011) CMS MicroTCA crate concepts & AMC card requirements, Jan 2011, ver. 0.9.
  19. 19.
    VadaTech Inc (2014) MicroTCA overview a brief introduction to Micro Telecommunications Computing Architecture concepts, Mar 2014, ver 1.1.
  20. 20.
    Pentair plc (2017) 14U 14-slot ATCA shelf user’s manual, May 2017, Doc-No: 63972-344\_R1.0.
  21. 21.
    NAT GmbH, N.A.T-MCH user’s manual ver. 1.31, Aug 2016, N.A.T GmbH Konrad-Zuse-Platz 9, 53227 Bonn-Oberkassel.
  22. 22.
    Hazen E et al (2013) The AMC13XG: a new generation clock, timing, DAQ module for CMS MicroTCA. JINST 8:C12036.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsImperial College LondonLondonUK

Personalised recommendations