Advertisement

The CMS Phase II Upgrade

  • Thomas Owen JamesEmail author
Chapter
  • 95 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In order to fully exploit the scientific potential of the LHC, it is planned to operate the machine at a higher average instantaneous luminosity from 2026 onwards, following a 30 month-long shutdown. During this shutdown, parts of the CMS detector will be replaced and upgraded. A new silicon tracker will be installed which must maintain performance under the increased luminosity conditions. This new tracker will read out information to the Level-1 trigger at the LHC bunch crossing rate of 40 MHz. In order to do this, novel tracking modules hosting a pair of closely spaced silicon sensors bonded to a single read-out ASIC are being produced. Pairs of clusters across the sensors can be correlated to identify high transverse momentum track candidates. Only these will be sent to the Level-1 trigger, allowing for 40 MHz readout.

References

  1. 1.
    Apollinari G et al (2015) High-Luminosity Large Hadron Collider (HL-LHC): preliminary design report, Dec 2015, CERN, Geneva.  https://doi.org/10.5170/CERN-2015-005
  2. 2.
    CMS Collaboration (2017) The Phase-2 upgrade of the CMS tracker, Jul 2017, technical report CERN-LHCC-2017-009Google Scholar
  3. 3.
    CMS Collaboration (2015) Technical proposal for the Phase-II upgrade of the CMS detector, Jun 2015, technical report CERN-LHCC-2015-010Google Scholar
  4. 4.
    CMS Collaboration, The Phase-2 upgrade of the CMS endcap calorimeter, technical report CERN-LHCC-2017-023Google Scholar
  5. 5.
    Abbaneo D (2016) Performance requirements for the phase-2 tracker upgrades for ATLAS and CMS. EPJ Web Conf 127:00002.  https://doi.org/10.1051/epjconf/201612700002CrossRefGoogle Scholar
  6. 6.
    CMS Collaboration (2017) The Phase-2 upgrade of the CMS L1 trigger interim technical design report, Sep 2017, technical report CERN-LHCC-2017-013Google Scholar
  7. 7.
    Bethe HA (1952) Molière’s theory of multiple scattering. Phys Rev 89(6).  https://doi.org/10.1103/PhysRev.89.1256
  8. 8.
    Patrignani C et al (Particle Data Group) (2016) The review of particle physics. Chin Phys C 40:100001Google Scholar
  9. 9.
    Pesaresi M, Hall G (2010) Simulating the performance of a pT tracking trigger for CMS. JINST 5:C08003.  https://doi.org/10.1088/1748-0221/5/08/C08003CrossRefADSGoogle Scholar
  10. 10.
    Hall G, Raymond M, Rose A (2010) 2-D PT module concept for the SLHC CMS tracker. JINST 5:C07012.  https://doi.org/10.1088/1748-0221/5/07/C07012CrossRefADSGoogle Scholar
  11. 11.
    Pesaresi M (2010) Development of a new Silicon Tracker for CMS at Super-LHC, Jan 2010, Imperial College London PhD thesis, CERN-THESIS-2010-083Google Scholar
  12. 12.
    Moreria P et al (2009) The GBT project, Sep 2009, Topical Workshop on Electronics for Particle Physics, Paris, France, pp 342–346.  https://doi.org/10.5170/CERN-2009-006.342
  13. 13.
    Raymond M, Braga D, Ferguson W et al (2012) The CMS binary chip for microstrip tracker readout at the SLHC. JINST 7:C01033.  https://doi.org/10.1088/1748-0221/7/01/C01033CrossRefGoogle Scholar
  14. 14.
    Braga D, Hall G, Jones L et al (2012) CBC2: a microstrip readout ASIC with coincidence logic for trigger primitives at HL-LHC. JINST 7:C10003.  https://doi.org/10.1088/1748-0221/7/10/C10003CrossRefGoogle Scholar
  15. 15.
    Caponetto L, Viret S, Zoccarato Y (2015) CIC1 technical specification, Dec 2015, Institut de Physique Nucléaire de Lyon (FR). https://espace.cern.ch/Tracker-Upgrade/Electronics/CIC/Shared%20Documents/Specifications/CIC_specs_v1.1.pdf
  16. 16.
    Ceresa D et al (2014) Macro Pixel ASIC (MPA): the readout ASIC for the pixel-strip (PS) module of the CMS outer tracker at HL-LHC. JINST 9:C11012.  https://doi.org/10.1088/1748-0221/9/11/C11012CrossRefGoogle Scholar
  17. 17.
    Moreira P (2017). LpGBT specification document, Jul 2017. https://espace.cern.ch/GBT-Project/LpGBT/Specifications/LpGbtxSpecifications.pdf
  18. 18.
    Soós C et al (2017) Versatile link PLUS transceiver development. JINST 12:C03068.  https://doi.org/10.1088/1748-0221/12/03/C03068CrossRefGoogle Scholar
  19. 19.
    K\(\ddot{\text{o}}\)nig A, Bergauer T, Dragicevic M, Humann B, (2017) Field effect transistor test structures for p-stop strip isolation studies. JINST 12:C02067.  https://doi.org/10.1088/1748-0221/12/02/C02067
  20. 20.
    Grossmann J (2017) PS-module prototypes with MPA-light readout chip for the CMS tracker phase 2 upgrade. JINST 12:C02049.  https://doi.org/10.1088/1748-0221/12/02/C02049CrossRefGoogle Scholar
  21. 21.
    Jansen H et al (2016) Performance of the EUDET-type beam telescopes, May 2016, EPJ Techniques and Instrumentation 3.  https://doi.org/10.1140/epjti/s40485-016-0033-2
  22. 22.
    Obermann T et al (2014) Implementation of a configurable FE-I4 trigger plane for the AIDA telescope. JINST 9:C03035.  https://doi.org/10.1088/1748-0221/9/03/C03035CrossRefGoogle Scholar
  23. 23.
    Cussans D (2009). Description of the JRA1 Trigger Logic Unit (TLU), Sep 2009, v0.2c, EUDET-Memo-2009-4. https://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf
  24. 24.
    Vichoudis P et al (2010) The Gigabit Link Interface Board (GLIB), a flexible system for the evaluation and use of GBT- based optical links. JINST 5:C11007.  https://doi.org/10.1088/1748-0221/5/11/C11007
  25. 25.
    Pesaresi M et al (2015) The FC7 AMC for generic DAQ & control applications in CMS. JINST 10:C03036.  https://doi.org/10.1088/1748-0221/10/03/C03036CrossRefGoogle Scholar
  26. 26.
    Xilinx Inc (2017) 7 series FPGAs data sheet: overview, Aug 2017, product specification, DS180 (v2.5). https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
  27. 27.
    PICMG (2003) AdvancedTCA Short Form Specification, Jan 2003. https://indico.cern.ch/event/119030/attachments/61294/88092/PICMG_3_0_Shortform.pdf
  28. 28.
    Aggleton R et al (2017) An FPGA based track finder for the L1 trigger of the CMS experiment at the High Luminosity LHC. JINST 12:P12019.  https://doi.org/10.1088/1748-0221/12/12/P12019CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsImperial College LondonLondonUK

Personalised recommendations