Skip to main content

Witnessing Causal Nonseparability: Theory and Experiment

  • Chapter
  • First Online:
Rethinking Causality in Quantum Mechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 531 Accesses

Abstract

We develop a technique to witness a process that is not causally separable, in that it cannot be written as a fixed-order quantum circuit or a mixture of those. Using the process matrix formalism, we find a set of measurements within the process that proves causal non-separability. The problem of finding these measurements can be written as a SemiDefinite Program that can be solved efficiently. We apply our method in an experiment we performed in our labs, where we implemented a causally non-separable process and proved it to be so by performing unitary operations and final measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araújo M et al (2015) Witnessing causal nonseparability. New J Phys 17:102001

    Article  Google Scholar 

  2. Oreshkov O, Costa F, Brukner Č (2012) Quantum correlations with no causal order. Nat Commun 3:1092

    Article  ADS  Google Scholar 

  3. Oreshkov O, Giarmatzi C (2016) Causal and causally separable processes. New J Phys 18:093020

    Article  Google Scholar 

  4. Hardy L (2009) Foliable operational structures for general probabilistic theories. In: Halvorson H (ed) Deep beauty: understanding the quantum world through mathematical innovation, p 409

    Google Scholar 

  5. Coecke B (2010) Quantum picturalism. Contemp Phys 51:59–83

    Article  ADS  Google Scholar 

  6. Chiribella G, D’Ariano GM, Perinotti P (2010) Probabilistic theories with purification. Phys Rev A 81:062348

    Article  ADS  Google Scholar 

  7. Chiribella G, D’Ariano GM, Perinotti P (2011) Informational derivation of quantum theory. Phys Rev A 84:012311

    Article  ADS  Google Scholar 

  8. Chiribella G, D’Ariano GM, Perinotti P, Valiron B (2013) Quantum computations without definite causal structure. Phys Rev A 88:022318

    Article  ADS  Google Scholar 

  9. Chiribella G (2012) Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys Rev A 86:040301

    Article  ADS  Google Scholar 

  10. Araújo M, Costa F, Brukner Č (2014) Computational advantage from quantum-controlled ordering of gates. Phys Rev Lett 113:250402

    Article  ADS  Google Scholar 

  11. Procopio LM et al (2015) Experimental superposition of orders of quantum gates. Nat Commun 6:7913

    Google Scholar 

  12. Rubino G et al (2017) Experimental verification of an indefinite causal order. Sci Adv 3

    Article  ADS  Google Scholar 

  13. Rockafellar RT (1970) Convex analysis. Princeton University Press

    Google Scholar 

  14. Gutoski G, Watrous J (2006) Toward a general theory of quantum games. In: Proceedings of 39th ACM STOC, pp 565–574

    Google Scholar 

  15. Chiribella G, D’Ariano GM, Perinotti P (2009) Theoretical framework for quantum networks. Phys Rev A 80:022339

    Article  ADS  MathSciNet  Google Scholar 

  16. Nesterov Y, Nemirovskii A (1987) Interior point polynomial algorithms in convex programming. Studies in Applied Mathematics (Society for Industrial and Applied Mathematics)

    Google Scholar 

  17. Goswami K et al (2018) Indefinite causal order in a quantum switch. Phys Rev Lett 121:090503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Giarmatzi .

Appendix: Process Matrix Characterization

Appendix: Process Matrix Characterization

Bipartite valid process matrices: Here we provide the derivation of the Eq. (3.5) that completely characterize the set of bipartite causally separable process matrices.

The set of valid process matrices is defined by the following requirements: the bipartite expression of the probabilities in Eq. (3.1) must be non-negative and sum up to one for all possible operations (including operations that act on ancillary systems on arbitrary input states, which we ignore at the moment although it leads to the same conclusion). These yield

$$\begin{aligned}&W \ge 0 \end{aligned}$$
(3.47)
$$\begin{aligned}&{{\,\mathrm{Tr}\,}}[(M^{A_IA_O}\otimes M^{B_IB_O}) W^{A_IA_OB_IB_O}] = 1\quad \forall M^{A_IA_O}\ge 0,\ M^{B_IB_O}\ge 0,\end{aligned}$$
(3.48)
$$\begin{aligned}&\text {s. t.}\quad _{A_O}M^{A_IA_O} = \mathbbm {1}^{A_IA_O}/d_{A_O},\ _{B_O}M^{B_IB_O} = \mathbbm {1}^{B_IB_O}/d_{B_O}. \end{aligned}$$
(3.49)

We remind the definition of two maps, we will use extensively

$$\begin{aligned}&_{x} W = \frac{\mathbbm {1}^{x}}{d_x} {{\,\mathrm{Tr}\,}}_{x}W\end{aligned}$$
(3.50)
$$\begin{aligned}&_{[1-x]}W = W -~_xW, \end{aligned}$$
(3.51)

Using the second map we defined above, we can see that for any two Hermitian operators X and Y, the operators \(_{[1-{A_O}]}X + \mathbbm {1}^{A_IA_O}\) and \(_{[1-{B_O}]}Y + \mathbbm {1}^{B_IB_O}\) satisfy the above normalization constraints in Eq. (3.49). Then we write the normalization condition of the probabilities of Eq. (3.48) as

$$\begin{aligned} {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X + \mathbbm {1}^{A_IA_O}\otimes (_{[1-{B_O}]}Y + \mathbbm {1}^{B_IB_O}W] = 1,\quad \forall X,Y \end{aligned}$$
(3.52)

For \(X=Y=0\) this yields

$$\begin{aligned} {{\,\mathrm{Tr}\,}}(W) = d_{A_O}d_{B_O}. \end{aligned}$$
(3.53)

For \(Y=0\) and \(X=0\) in turn, implies

$$\begin{aligned} \begin{aligned} {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X\otimes \mathbbm {1}^{B_IB_O}W] = 0,\quad \forall X,\\ {{\,\mathrm{Tr}\,}}[(\mathbbm {1}^{A_IA_O}\otimes _{[1-{B_O}]}Y)W] = 0,\quad \forall Y, \end{aligned} \end{aligned}$$
(3.54)

because for \(Y=0\) we have

$$\begin{aligned} {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X + \mathbbm {1}^{A_IA_O})\otimes \mathbbm {1}^{B_IB_O})W] = 1\Rightarrow \\ {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X\otimes \mathbbm {1}^{B_IB_O})W] + {{\,\mathrm{Tr}\,}}[(\mathbbm {1}^{A_IA_O})\otimes \mathbbm {1}^{B_IB_O})W] = 1\Rightarrow \\ {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X\otimes \mathbbm {1}^{B_IB_O})W] = 0 \end{aligned}$$

Back to the Eq. (3.54), they imply

$$\begin{aligned} {{\,\mathrm{Tr}\,}}[(_{[1-{A_O}]}X\otimes _{[1-{B_O}]}Y) W] = 0 \end{aligned}$$
(3.55)

Finally, thinking of the trace as a Hilbert-Schmidt inner product and the fact that the maps \(_{[1-{A_O}]}\) and \(_{[1-{B_O}]}\) are self-adjoint, the above conditions (3.54), (3.55) are equivalent to

$$\begin{aligned} \begin{aligned} _{[1-{A_O}]}({{\,\mathrm{Tr}\,}}_{B_IB_O}W) = 0\\ _{[1-{B_O}]}({{\,\mathrm{Tr}\,}}_{A_IA_O} W) = 0\\ _{[1-{A_O}] [1-{B_O}]}W = 0. \end{aligned} \end{aligned}$$
(3.56)

which we rewrite as

$$\begin{aligned} \begin{aligned} _{B_IB_O}W = _{A_OB_IB_O}W\\ _{A_IA_O}W = _{A_IA_OB_O}W\\ W = ~_{B_O}W +~_{A_O}W -~_{A_OB_O}W \end{aligned} \end{aligned}$$
(3.57)

Each of these conditions defines a linear subspace, whose intersection is a subspace on which all valid bipartite process matrices live, and we denote as

$$\begin{aligned} \mathcal {L}_V =\{W\in A_I\otimes A_O\otimes B_I\otimes B_O|W=L_V(W)\}, \end{aligned}$$
(3.58)

The projector onto this subspace, \(L_V\) will be used in many occasions in this chapter, hence it is useful to find its expression. Firstly, we can write each of the equations in (3.57) as a projector onto a subspace

$$\begin{aligned} W = L_A(W),\ W = L_B(W),\ W = L_{AB}(W) \end{aligned}$$
(3.59)

where the projectors are

$$\begin{aligned} \begin{aligned} L_A = W - ~ _{B_IB_O}W + ~_{A_OB_IB_O}W, \\ L_B = W - ~ _{A_IA_O}W + ~_{A_IA_OB_O}W,\\ L_{AB} = ~_{B_O}W +~_{A_O}W - ~_{A_OB_O}W \end{aligned} \end{aligned}$$
(3.60)

Then the projector we are looking for, \(L_V\), is the intersection of the subspaces of the above three projectors, and is given simply by their composition, i.e. \(L_V(W) = L_A \circ L_B \circ L_{AB}\), which can be written as

$$\begin{aligned} L_V(W) = ~_{A_O}W + ~ _{B_O}W - ~_{A_OB_O}W - ~_{B_IB_O}W + ~_{A_OB_IB_O}W - ~_{A_IA_O}W + ~ _{A_IA_OB_O}W \end{aligned}$$
(3.61)

This completes the characterization of the set of bipartite process matrices: an operator \(W\in A_I\otimes A_O\otimes B_I\otimes B_O\) is valid if and only if \(W\ge 0\), \({{\,\mathrm{Tr}\,}}W = d_{A_O}d_{B_O}\) and \(W=L_V(W)\).

Tripartite valid process matrices: Here we provide the characterization of the set of valid process matrices in the tripartite case and write the explicit expression of the projector onto the subspace they live. An analogous to the bipartite case argument leads to the following conclusion: an operator \(W\in A_I\otimes A_O\otimes B_I\otimes B_O\otimes C_I\otimes C_O\) is a valid tripartite process matrix if and only if \(W\ge 0\), \({{\,\mathrm{Tr}\,}}W = d_{A_O}d_{B_O}d_{C_O}\) and

$$\begin{aligned} \begin{aligned} W = L_X(W),\quad X = \{A,B,C\}\\ W = L_{XY}(W), \quad \{X,Y\}= \{A,B,C\}\\ W = L_{ABC}(W) \end{aligned} \end{aligned}$$
(3.62)

where the maps \(L_A, L_B, L_C, L_{AB}, L_{AC}, L_{BC}, L_{ABC}\) are commuting projectors onto linear subspaces of \(A_I\otimes A_O\otimes B_I\otimes B_O\otimes C_I\otimes C_O\) defined by

$$\begin{aligned} \begin{aligned} L_{A}(W) = {}_{[1-(1-A_O)B_IB_OC_IC_O]}W \, , \\ L_{B}(W) = {}_{[1-(1-B_O)A_IA_OC_IC_O]}W \, , \\ L_{C}(W) = {}_{[1-(1-C_O)A_IA_OB_IB_O]}W \, , \\ L_{AB}(W) = {}_{[1-(1-A_O)(1-B_O)C_IC_O]}W \, , \\ L_{AC}(W) = {}_{[1-(1-A_O)(1-C_O)B_IB_O]}W \, , \\ L_{BC}(W) = {}_{[1-(1-B_O)(1-C_O)A_IA_O]}W \, , \\ L_{ABC}(W) = {}_{[1-(1-A_O)(1-B_O)(1-C_O)]}W \end{aligned} \end{aligned}$$
(3.63)

where we used the shorthand notation

$$\begin{aligned} {}_{[\sum _X \alpha _X X]} W = \sum _X \alpha _X \cdot {}_X W \end{aligned}$$
(3.64)

for a sum over products of subsystems X with coefficients \(\alpha _X\) (and with \({}_1 W := W\)).

The above constraints are equivalent to \(W = L_V(W)\), where the map \(L_V\) is obtained by composing the 7 maps in (3.62), and is expressed as

$$\begin{aligned} L_V(W) = {}_{\big [1 - (1 - A_O + A_I A_O) (1 - B_O + B_I B_O) (1 - C_O + C_I C_O)} {}_{+ \ A_I A_O B_I B_O C_I C_O \big ]} W \, \end{aligned}$$
(3.65)

which defines a projector onto the linear subspace

$$\begin{aligned} \mathcal {L}_V = \big \{W \in A_I \!\otimes \! A_O \!\otimes \! B_I \!\otimes \! B_O \!\otimes \! C_I \!\otimes \! C_O \, | \, W = L_V(W)\big \} \, . \end{aligned}$$
(3.66)

This completes the characterization of the valid tripartite process matrices. For the n-partite case, refer to the Appendix B of the relevant paper [1].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giarmatzi, C. (2019). Witnessing Causal Nonseparability: Theory and Experiment. In: Rethinking Causality in Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31930-4_3

Download citation

Publish with us

Policies and ethics