Skip to main content

Causal and Causally Separable Processes

  • Chapter
  • First Online:
Rethinking Causality in Quantum Mechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 548 Accesses

Abstract

We develop a process framework to study causality between n labs that respect any general probabilistic theory. The transition from 2 to 3 labs turned out to be tricky and the concept of dynamical causal order was introduced. We focus on the quantum case and develop a number of new concepts for processes with various interesting properties regarding causality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the Chap. 6 following the relevant paper [25] we refer to these sets as non-signaling sets, because by definition the parties in this set cannot signal to each other. However, the consecutive sets are defined by asking the question ‘who is first’, whereas the nonsignaling sets are defined by the question ‘who is last’. This implies that in a given situation, the consecutive sets and the non-signaling sets will not coincide—although they will both contain sets of parties that are causally independent.

References

  1. Oreshkov O, Giarmatzi C (2016) New J Phys 18:093020

    Google Scholar 

  2. Oreshkov O, Costa F, Brukner Č (2012) Quantum correlations with no causal order. Nat Commun 3:1092

    Article  ADS  Google Scholar 

  3. Hardy L (2005) Probability theories with dynamic causal structure: a new framework for quantum gravity. arXiv:0509120

  4. Hardy L (2007) Quantum gravity computers: on the theory of computation with indefinite causal structure. arXiv:quant-ph/0701019

  5. Chiribella G, D’Ariano GM, Perinotti P, Valiron, B (2013) Beyond causally ordered quantum computers. Phys Rev A 88, 022318. arXiv:0912.0195 (2009)

  6. Colnaghi T, D’Ariano GM, Perinotti P, Facchini S (2012) Quantum computation with programmable connections between gates. Phys Lett A 376:2940–2943

    Article  ADS  Google Scholar 

  7. Chiribella G (2012) Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys Rev A 86:040301

    Article  ADS  Google Scholar 

  8. Baumeler Ä, Wolf S (2014) Perfect signaling among three parties violating predefined causal order. Proc Int Symp Inf Theory (ISIT) 2014:526–530

    Google Scholar 

  9. Nakago K, Hajdušek M, Nakayama S, Murao M (2015) Parallelized adiabatic gate teleportation. Phys Rev A 92:062316

    Article  ADS  Google Scholar 

  10. Baumeler Ä, Feix A, Wolf S (2014) Maximal incompatibility of locally classical behavior and global causal order in multi-party scenarios. Phys Rev A 90:042106

    Article  ADS  Google Scholar 

  11. Araújo M, Costa F, Brukner Č (2014) Computational advantage of quantum-controlled ordering of gates. Phys Rev Lett 113:250402

    Article  ADS  Google Scholar 

  12. Brukner Č (2014) Quantum causality. Nat Phys 10(4):259–263

    Article  Google Scholar 

  13. Morimae T (2014) Acausal measurement-based quantum computing. Phys Rev A 90:010101(R)

    Article  ADS  Google Scholar 

  14. Ibnouhsein I, Grinbaum A (2015) Information-theoretic constraints on correlations with indefinite causal order. Phys Rev A 92:042124

    Article  ADS  MathSciNet  Google Scholar 

  15. Brukner Č (2015) Bounding quantum correlations with indefinite causal order. New J Phys 17:073020

    Article  MathSciNet  Google Scholar 

  16. Oreshkov O, Cerf NJ (2016) Operational quantum theory without predefined time. New J Phys 18:073037. http://stacks.iop.org/1367-2630/18/i=7/a=073037

    Article  ADS  MathSciNet  Google Scholar 

  17. Oreshkov O, Cerf NJ (2015) Operational formulation of time reversal in quantum theory. Nat Phys 11:853–858

    Article  Google Scholar 

  18. Procopio LM et al (2015) Experimental superposition of orders of quantum gates. Nat Commun 6:7913. https://doi.org/10.1038/ncomms8913

    Article  ADS  Google Scholar 

  19. Rubino G et al (2016) Experimental verification of an indefinite causal order. Sci Adv 2. http://advances.sciencemag.org/content/3/3/e1602589.abstract

  20. Lee CM, Barrett J (2015) Computation in generalised probabilistic theories. New J Phys 17:083001. http://stacks.iop.org/1367-2630/17/i=8/a=083001

    Article  ADS  MathSciNet  Google Scholar 

  21. Araújo M, Branciard C, Costa F, Feix A, Giarmatzi C, Brukner Č (2015) Witnessing causal nonseparability. New J Phys 17:102001

    Article  Google Scholar 

  22. Baumeler Ä, Wolf S (2016) The space of logically consistent classical processes without causal order. New J Phys 18:013036. http://stacks.iop.org/1367-2630/18/i=1/a=013036

    Article  ADS  Google Scholar 

  23. Branciard C, Araújo M, Feix A, Costa F, Brukner Č (2016) The simplest causal inequalities and their violation. New J Phys 18:013008

    Article  MathSciNet  Google Scholar 

  24. Abbott AA, Giarmatzi C, Costa F, Branciard C (2016) Multipartite causal correlations: polytopes and inequalities. Phys Rev A 94:032131

    Article  ADS  Google Scholar 

  25. Giarmatzi C, Costa F (2018) A quantum causal discovery algorithm. npj Quantum Inf 4:17

    Google Scholar 

  26. Portmann C, Matt C, Maurer U, Renner R, Tackmann B (2017) Causal boxes: quantum information-processing systems closed under composition. IEEE Trans Inf Theory 63(5):3277–3305. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7867830&isnumber=7905784

  27. Branciard C (2016) Witnesses of causal nonseparability: an introduction and a few case studies. Sci Rep 6:26018

    Article  ADS  Google Scholar 

  28. Pearl J (2009) Causality: models, reasoning and inference. Cambridge University Press

    Google Scholar 

  29. Hardy L (2009) Operational structures as a foundation for probabilistic theories, PIRSA:09060015, Talk at http://pirsa.org/09060015/

  30. Chiribella G, D’Ariano GM, Perinotti P (2010) Probabilistic theories with purification. Phys Rev A 81:062348

    Article  ADS  Google Scholar 

  31. Chiribella G, D’Ariano GM, Perinotti P (2011) Informational derivation of quantum theory. Phys Rev A 84:012311

    Article  ADS  Google Scholar 

  32. Hardy L (2011) Reformulating and reconstructing quantum theory. arXiv:1104.2066

  33. Jamiołkowski A (1972) Linear transformations which preserve trace and positive semidefiniteness of operators. Rep Math Phys 3(4):275–278

    Article  ADS  MathSciNet  Google Scholar 

  34. Choi M-D (1975) Completely positive linear maps on complex matrices. Lin Alg Appl 10:285–290

    Article  MathSciNet  Google Scholar 

  35. Barnum H, Fuchs CA, Renes JM, Wilce A (2005) Influence-free states on compound quantum systems. arXiv:quant-ph/0507108

  36. Eddington A (1928) The nature of the physical world. Cambridge University Press

    Google Scholar 

  37. Davies E, Lewis J (1970) An operational approach to quantum probability. Comm Math Phys 17:239–260

    Article  ADS  MathSciNet  Google Scholar 

  38. Kraus K (1983) States, effects and operations. Springer, Berlin

    MATH  Google Scholar 

  39. Chiribella G, D’Ariano GM, Perinotti P (2009) Theoretical framework for quantum networks. Phys Rev A 80:022339

    Article  ADS  MathSciNet  Google Scholar 

  40. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70:1895

    Article  ADS  MathSciNet  Google Scholar 

  41. Feix A, Araújo M, Brukner Č (2016) Causally nonseparable processes admitting a causal model. New J Phys 18: 083040. http://iopscience.iop.org/1367-2630/18/8/083040/

    Article  ADS  Google Scholar 

  42. Bell JS (1964) On the Einstein Podolsky Rosen Paradox. Physics 1(3):195–200

    Article  MathSciNet  Google Scholar 

  43. Werner RF (1989) Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys Rev A 40:4277

    Article  ADS  Google Scholar 

  44. Knill E (1996) Conventions for quantum pseudocode, LANL report LAUR-96-2724

    Google Scholar 

  45. Valiron B, Selinger P (2005) A lambda calculus for quantum computation with classical control. In: Proceedings of the 7th international conference on typed lambda calculi and applications (TLCA), vol 3461. Lecture Notes in Computer Science, pp. 354–368. Springer

    Google Scholar 

  46. Chiribella G, D’Ariano GM, Perinotti P (2008) Transforming quantum operations: quantum supermaps. Europhys Lett 83:30004

    Article  ADS  Google Scholar 

  47. Ried K, Agnew M, Vermeyden L, Janzing D, Spekkens RW, Resch KJ (2015) A quantum advantage for inferring causal structure. Nat Phys 11:414–420

    Article  Google Scholar 

  48. Araújo M, Feix A, Navascués M, Brukner Č (2017) A purification postulate for quantum mechanics with indefinite causal order. Quantum 1:10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Giarmatzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giarmatzi, C. (2019). Causal and Causally Separable Processes. In: Rethinking Causality in Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31930-4_2

Download citation

Publish with us

Policies and ethics