Skip to main content

Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11791))

Abstract

Decoding fluid intelligence from brain MRI data in adolescents is a highly challenging task. In this study, we took part in the ABCD Neurocognitive Prediction (NP) Challenge 2019, in which a large set of T1-weighted magnetic resonance imaging (MRI) data and pre-residualized fluid intelligence scores (corrected for brain volume, data collection site and sociodemographic variables) of children between 9–11 years were provided (\(N=3739\) for training, \(N=415\) for validation and \(N=4516\) for testing). We propose here the Caruana Ensemble Search method to choose best performing models over a large and diverse set of candidate models. These candidate models include convolutional neural networks (CNNs) applied to brain areas considered to be relevant in fluid intelligence (e.g. frontal and parietal areas) and high-performing standard machine learning methods (namely support vector regression, random forests, gradient boosting and XGBoost) applied to region-based scores including volume, mean intensity and count of gray matter voxels. To further create diversity and increase robustness, a wide set of hyperparameter configurations for each of the models was used. On the validation and the hold out test data, we obtained a mean squared error (MSE) of 71.15 and 93.68 respectively (rank 12 out of 24, MSE range 92.13–102.25). Among most selected models were XGBoost together with the three region-based scores, the other regression models together with volume or CNNs based on the middle frontal gyrus. We discuss these results in light of previous research findings on fluid intelligence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Official website: https://sibis.sri.com/abcd-np-challenge/.

  2. 2.

    More details on acquisition and pre-processing are provided on the challenge website.

References

  1. Cattell, R.B.: Intelligence: Its Structure, Growth and Action, vol. 35. Elsevier (1987). https://psycnet.apa.org/record/1987-98151-000

  2. Jaeggi, S.M., Buschkuehl, M., Jonides, J., Perrig, W.J.: Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. 105(19), 6829–6833 (2008). https://doi.org/10.1073/pnas.0801268105

    Article  Google Scholar 

  3. Ferrer, E., O’Hare, E.D., Bunge, S.A.: Fluid reasoning and the developing brain. Front. Neurosci. 3, 3 (2009). https://doi.org/10.3389/neuro.01.003.2009

    Article  Google Scholar 

  4. Goswami, U.: Analogical Reasoning in Children. Psychology Press (2013). https://doi.org/10.4324/9781315804729

    Book  Google Scholar 

  5. Gottfredson, L.S.: Why g matters: the complexity of everyday life. Intelligence 24(1), 79–132 (1997). https://doi.org/10.1016/S0160-2896(97)90014-3

    Article  Google Scholar 

  6. Jung, R.E., Haier, R.J.: The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30(2), 135–154 (2007). https://doi.org/10.1017/S0140525X07001185

    Article  Google Scholar 

  7. Basten, U., Hilger, K., Fiebach, C.J.: Where smart brains are different: a quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence 51, 10–27 (2015). https://doi.org/10.1016/j.intell.2015.04.009

    Article  Google Scholar 

  8. Casey, B.J., et al.: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018). https://doi.org/10.1016/j.dcn.2018.03.001

    Article  Google Scholar 

  9. Adolescent Brain Cognitive Development (ABCD) Study. https://abcdstudy.org/about/

  10. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  11. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 828–833. IEEE (2006). https://doi.org/10.1109/ICDM.2006.76

  12. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. CoRR, abs/1711.01468 (2017). http://arxiv.org/abs/1711.01468

  13. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman & Hall/CRC (2012). https://doi.org/10.1201/b12207. ISBN 1439830037, 9781439830031

    Book  Google Scholar 

  14. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003). https://doi.org/10.1023/A:1022859003006

    Article  MATH  Google Scholar 

  15. Sollich, P., Krogh, A.: Learning with ensembles: how overfitting can be useful. In: Advances in Neural Information Processing Systems, pp. 190–196 (1996). http://papers.nips.cc/paper/1044-learning-with-ensembles-how-overfitting-can-be-useful.pdf

  16. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2018). https://doi.org/10.1176/appi.ajp.2017.17040469. PMID: 29084454

    Article  Google Scholar 

  17. Akshoomoff, N., et al.: VIII. NIH toolbox cognition battery (CB): composite scores of crystallized, fluid, and overall cognition. Monogr. Soc. Res. Child Dev. 78(4), 119–132 (2013). https://doi.org/10.1111/mono.12038

    Article  Google Scholar 

  18. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progress Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  19. Błaszczyński, J., Stefanowski, J.: Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150, 529–542 (2015). https://doi.org/10.1016/j.neucom.2014.07.064

    Article  Google Scholar 

  20. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Tran. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012). https://doi.org/10.1109/TSMCC.2011.2161285

    Article  Google Scholar 

  21. Krawczyk, B., Woźniak, M., Schaefer, G.: Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14, 554–562 (2014). https://doi.org/10.1016/j.asoc.2013.08.014

    Article  Google Scholar 

  22. Shattuck, D.W., et al.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008). https://doi.org/10.1016/j.neuroimage.2007.09.031

    Article  Google Scholar 

  23. Colom, R., et al.: Hippocampal structure and human cognition: key role of spatial processing and evidence supporting the efficiency hypothesis in females. Intelligence 41(2), 129–140 (2013). https://doi.org/10.1016/j.neuroimage.2007.09.031

    Article  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  25. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  26. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  27. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001). https://www.jstor.org/stable/2699986

    Article  MathSciNet  Google Scholar 

  28. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

  29. Whalen, S., Pandey, G.: A comparative analysis of ensemble classifiers: case studies in genomics. In: 2013 IEEE 13th International Conference on Data Mining, pp. 807–816. IEEE (2013). https://doi.org/10.1109/ICDM.2013.21

  30. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng. 34(4), 485–496 (2008). https://doi.org/10.1109/TSE.2008.35

    Article  Google Scholar 

  31. Shaw, P., et al.: Intellectual ability and cortical development in children and adolescents. Nature 440(7084), 676 (2006). https://doi.org/10.1038/nature04513

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the German Research Foundation (DFG, 389563835), the Brain & Behavior Research Foundation (NARSAD Young Investigator Grant), the Manfred and Ursula-Müller Stiftung and Charité – Universitätsmedizin Berlin (Rahel-Hirsch scholarship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Ritter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, S., Eitel, F., Ritter, K. (2019). Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics