Skip to main content

An AutoML Approach for the Prediction of Fluid Intelligence from MRI-Derived Features

  • Conference paper
  • First Online:
Adolescent Brain Cognitive Development Neurocognitive Prediction (ABCD-NP 2019)

Abstract

We propose an AutoML approach for the prediction of fluid intelligence from T1-weighted magnetic resonance images. We extracted 122 features from MRI scans and employed Sequential Model-based Algorithm Configuration to search for the best prediction pipeline, including the best data pre-processing and regression model. In total, we evaluated over 2600 prediction pipelines. We studied our final model by employing results from game theory in the form of Shapley values. Results indicate that predicting fluid intelligence from volume measurements is a challenging task with many challenges. We found that our final ensemble of 50 prediction pipelines associated larger parahippocampal gyrus volumes with lower fluid intelligence, and higher pons white matter volume with higher fluid intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://nda.nih.gov/edit_collection.html?id=3104.

  2. 2.

    https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf.

  3. 3.

    See https://nda.nih.gov/data_structure.html?short_name=btsv01 for a full list of volumes.

References

  1. Barreiro, E., Munteanu, C.R., Cruz-Monteagudo, M., Pazos, A., González-Díaz, H.: Net-net auto machine learning (AutoML) prediction of complex ecosystems. Sci. Rep. 8(1), 12340 (2018)

    Article  Google Scholar 

  2. Caruana, R., Niculescu-Mizil, A.: Ensemble selection from libraries of models. In: Proceedings of the 21st International Conference on Machine Learning, p. 18 (2004)

    Google Scholar 

  3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28, pp. 2962–2970 (2015)

    Google Scholar 

  4. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  5. Guyon, I., et al.: Analysis of the AutoML challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 177–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_10

    Chapter  Google Scholar 

  6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  7. Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics, 1–7 (2019)

    Google Scholar 

  8. Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl. Stoch. Models Bus. Ind. 17(4), 319–330 (2001)

    Article  MathSciNet  Google Scholar 

  9. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30, pp. 4765–4774 (2017)

    Google Scholar 

  10. Orlenko, A., et al.: Considerations for automated machine learning in clinical metabolic profiling: altered homocysteine plasma concentration associated wtih metformin exposure. In: Pacific Symposium on Biocomputing, vol. 23. World Scientific (2017)

    Google Scholar 

  11. Pearson, K.: On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2018)

    Article  Google Scholar 

  14. Puri, M.: Automated machine learning diagnostic support system as a computational biomarker for detecting drug-induced liver injury patterns in whole slide liver pathology images. Assay Drug Dev. Technol. (2019)

    Google Scholar 

  15. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Article  Google Scholar 

  16. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  17. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Bavarian State Ministry of Education, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pölsterl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pölsterl, S., Gutiérrez-Becker, B., Sarasua, I., Guha Roy, A., Wachinger, C. (2019). An AutoML Approach for the Prediction of Fluid Intelligence from MRI-Derived Features. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics