Skip to main content

A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction

  • Conference paper
  • First Online:
Adolescent Brain Cognitive Development Neurocognitive Prediction (ABCD-NP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11791))

Abstract

The ABCD Neurocognitive Prediction Challenge is a community driven competition asking competitors to develop algorithms to predict fluid intelligence score from T1-w MRIs. In this work, we propose a deep learning combined with gradient boosting machine framework to solve this task. We train a convolutional neural network to compress the high dimensional MRI data and learn meaningful image features by predicting the 123 continuous-valued derived data provided with each MRI. These extracted features are then used to train a gradient boosting machine that predicts the residualized fluid intelligence score. Our approach achieved mean square error (MSE) scores of 18.4374, 68.7868, and 96.1806 for the training, validation, and test set respectively.

Y. S. Vang and Y. Cao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABCD neurocognitive prediction challenge. https://sibis.sri.com/abcd-np-challenge/. Accessed 13 Mar 2019

  2. Adolescent brain cognitive development study. https://abcdstudy.org/. Accessed 13 Mar 2019

  3. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017)

    Article  Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  5. Cole, M.W., Yarkoni, T., Repovš, G., Anticevic, A., Braver, T.S.: Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32(26), 8988–8999 (2012)

    Article  Google Scholar 

  6. Colom, R., et al.: Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37(2), 124–135 (2009). https://doi.org/10.1016/J.INTELL.2008.07.007. https://www.sciencedirect.com/science/article/pii/S0160289608000925

    Article  Google Scholar 

  7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  8. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  9. Gray, J.R., Chabris, C.F., Braver, T.S.: Neural mechanisms of general fluid intelligence. Nature Neurosci. (2003). https://doi.org/10.1038/nn1014

    Article  Google Scholar 

  10. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  11. Jaeggi, S.M., Buschkuehl, M., Jonides, J., Perrig, W.J.: Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. 105(19), 6829–6833 (2008)

    Article  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  14. Luciana, M., et al.: Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67–79 (2018)

    Article  Google Scholar 

  15. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2017)

    Article  Google Scholar 

  16. Rashmi, K.V., Gilad-Bachrach, R.: DART: dropouts meet multiple additive regression trees. In: AISTATS, pp. 489–497 (2015)

    Google Scholar 

  17. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  18. Tang, H., Kim, D.R., Xie, X.: Automated pulmonary nodule detection using 3D deep convolutional neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, pp. 523–526. IEEE (2018)

    Google Scholar 

  19. Wang, L., Wee, C.Y., Suk, H.I., Tang, X., Shen, D.: MRI-based intelligence quotient (IQ) estimation with sparse learning. PloS one 10(3), e0117295 (2015)

    Article  Google Scholar 

  20. Zhu, W., et al.: AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46, 579–589 (2018)

    Google Scholar 

  21. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeeleng S. Vang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vang, Y.S., Cao, Y., Xie, X. (2019). A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics