Skip to main content

ZnO Nanometric Layers Used in Photovoltaic Cells

  • Conference paper
  • First Online:
  • 1263 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 77))

Abstract

The ZnO thin layers were grown on glass, InP and pInP-nCdS substrates from zinc acetate dissolved in water-acetic acid-methanol solution having a molarity of 0.2 M by using the spray method in the argon flow in the temperature range of (250–450) °C. The dependence of optical properties of ZnO layers on growth temperature have been investigated. The optical transmittance has values of 80–85% in the wavelength range of (200–1000) nm. The using of ZnO of the thickness of (60–80) nm as antireflective layers in nCdS-pInP structures allowed to increase the photovoltaic cell efficiency by 3%. The photosensitivity of the fabricated nZnO-pInP structures covers the wavelength region from 450 nm up to 1100 nm and allows the more efficient utilization of the incident light.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Granqwist, C.G.: Solar Energy Mater. Solar Cells 91, 1529 (2007)

    Google Scholar 

  2. Ellmer, K., Clen, A., Rech, B.: Transparent Conductivity Zinc Oxide. Basics and Applications in Thin Film Solar Cells, vol. 9 (2008)

    Google Scholar 

  3. Look, D.C.: Mater. Sci. Eng. B 80, 383 (2001)

    Google Scholar 

  4. Nahg, A., Remam, K., Rubenake, St.: Sold State Commun. 94, 251 (1995)

    Google Scholar 

  5. Sulkar, M.N., Tuler, N.L.: Adv. Ceram. 7, 71 (1984)

    Google Scholar 

  6. Lu, D.-S., Wu, C.-Y., Sheu, C.-S., Thai, F.-C., Li, C.-H.: J. Appl. Phys. 45, 3531 (2005)

    Google Scholar 

  7. Кpaвчeнкo, B.A., Лoпaeв, Д.B., Пaщeнкo, П.B., Пиpoгoв, B.Г., Paxимoв, A.Г., Cycнин, H.B., Tpифoнoв, A.C.: ЖTФ 28(8), 107 (2008)

    Google Scholar 

  8. Гpyзинцeв, A.H., Boлoв, B.К., Бapгxoy, К., Бeнayл, П.: ФTП 36(6), 74 (2002)

    Google Scholar 

  9. Гpyзинцeв, A.H., Boлкoв, B.К., Бepгxoy, К., Бeнayл, П.: ФTП 37(3), 275 (2003)

    Google Scholar 

  10. Aлeкcaндpoв, A., Beceлoв, A.Г., Киpяcoвa, O.A., Cepдoбинцeв, A.A.: Пиcьмa ЖTФ 38(18), 496 (2012)

    Google Scholar 

  11. Hung, N.L.: J. Korean Phys. Soc. 57(6), 1784 (2010)

    Google Scholar 

  12. Dang, V.L., Fu, Y.Q., Lua, J.K., Flewiit, A.J., Milnc, W.L.: Superlattices Microstruct. 42, 89 (2007)

    Google Scholar 

  13. Ataev, B.M., Bagamadova, A.M., Mamedova, Y.Y., Omaev, A.C., Ramadanov, M.R.: J. Cryst. Growny 198–199 (1999)

    Google Scholar 

  14. Song, D., Widenborg, P., Chin, W., Aberle, A.G.: Solar Energy Mater. Solar Cells 73, 1 (2002)

    Google Scholar 

  15. Lee, J.H., Ko, K.H., Parc, B.O.: J. Cryst. Growth 247, 119 (2003)

    Google Scholar 

  16. Singh, A.V., Cumar, M., Mehra, R.M., Vakamara, A., Ysihida, A.: J. Indian Inst. Sci. 52 (2001)

    Google Scholar 

  17. Yuosef, S., Combate, P., Podlecki, J., Asmar, R.A., Foucaran, A.: Cryst. Growth Des. 9(2), 1008 (2009)

    Google Scholar 

  18. Combrero, J., Elmanount, A., Hartit, B., Mollar, M., Mari, B.: Thin Solid Films 451–452, 198 (2004)

    Google Scholar 

  19. Ma, J.Y., Lee, F.S.C.: J. Mater. Sci. Mater. Electron. 11, 35 (2000)

    Google Scholar 

  20. Ayouchi, F., Martin, D., Lenen, J., Ramos, R.: J. Cryst. Growth 247, 497 (2003)

    Google Scholar 

  21. Hussain, B., et al.: Solar Energy Mater. Solar Cells 139, 95–100 (2015)

    Google Scholar 

  22. Chant, E., Wongratanaphisan, D., Gardchareon, A., et al.: Energy Procedia 79, 879–884 (2015)

    Article  Google Scholar 

  23. Simaşchevici, A., Şerban, D., Bruc, L., Coval, A., Gorceac, L., Monaico, E., Usatîi, Iu.: Int. Sci. J. Altern. Energy Ecol. ISJAEEET2 3451–3454 (2006)

    Google Scholar 

  24. Kunar, N., Casturi, V., Bangera, V., Shivacunar, G.: T48, V.1050–1054 (2014)

    Google Scholar 

  25. Maxнийт, B.П., Cлeтoв, M.M., Xycнyтдинoв, C.B.: Oптичecкий жypнaл 76, 6 (2009)

    Google Scholar 

  26. Botnariuc, V., Gorceac, L., Pleşca, V., Rudi, A., Rudi, Iu., Simaşchevichi, A., Şerban, D.: Analele ştiinţifice ale Universităţii de Stat din Moldova, seria “Ştiinţe reale”, pp. 61–69 (1997)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Culture and Research of Republic of Moldova for supporting this research by funding the grant 15.817.02.34A.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Botnariuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botnariuc, V. et al. (2020). ZnO Nanometric Layers Used in Photovoltaic Cells. In: Tiginyanu, I., Sontea, V., Railean, S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31866-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31865-9

  • Online ISBN: 978-3-030-31866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics