Skip to main content

3D-Printed Sensor Array of Semiconducting Oxides

  • Conference paper
  • First Online:
Book cover 4th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 77))

Abstract

Sensors start to play an ever increasing role in human life and new technologies for their cost-effective mass production are required. In this work, the one-step 3D-printing of nanoflakes—nanowire covered Fe2O3/Fe–CuO/Cu2O/Cu microparticles (MPs) with diameters of ~10 µm on the surface of glass substrate successfully forming an ordered net is reported for the first time. 3D-printed Fe–Cu and only Cu MPs-based stripes formed non-planar CuO/Cu2O/Cu and Fe2O3/Fe–CuO/Cu2O/Cu heterojunctions after thermal annealing at 425 ℃ for 4 h in air and were fully covered with nanoflakes of Fe2O3 and CuO nanowire net bridging MPs with external Au-contacts. The morphological, chemical and structural investigations were performed in detail, showing the high crystallinity of the 3D printed material. This concept proves to be easily translatable to other semiconducting, metallic or functional microparticles for the rapid fabrication of sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, Y., Wu, X., Guo, X., Kong, B., Zhang, M., Qian, X., Mi, S., Sun, W.: Sensors 17 (Basel, Switzerland) (2017)

    Article  Google Scholar 

  2. MacDonald, E., Wicker, R.: Science 353 (New York, N.Y.) (2016)

    Google Scholar 

  3. Zhu, W., O’Brien, C., O’Brien, J.R., Zhang, L.G.: Nanomedicine 9, 859 (London, England) (2014)

    Article  Google Scholar 

  4. Sultan, S., Siqueira, G., Zimmermann, T., Mathew, A.P.: Curr. Opin. Biomed. Eng. 2, 29 (2017)

    Article  Google Scholar 

  5. Campbell, T.A., Ivanova, O.S.: Nano Today 8, 119 (2013)

    Article  Google Scholar 

  6. Gowers, S.A.N., Curto, V.F., Seneci, C.A., Wang, C., Anastasova, S., Vadgama, P., Yang, G.-Z., Boutelle, M.G.: Anal. Chem. 87, 7763 (2015)

    Article  Google Scholar 

  7. Roda, A., Guardigli, M., Calabria, D., Calabretta, M.M., Cevenini, L., Michelini, E.: The Anal. 139, 6494 (2014)

    Article  Google Scholar 

  8. Muth, J.T., Vogt, D.M., Truby, R.L., Mengüç, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A.: Adv. Mater. 26, 6307 (Deerfield Beach, Fla.) (2014)

    Article  Google Scholar 

  9. Wu, S.-Y., Yang, C., Hsu, W., Lin, L.: Microsyst Nanoeng 1, 609 (2015)

    Google Scholar 

  10. Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano, J.: J Am. Ceram. Soc. 89, 3599 (2006)

    Article  Google Scholar 

  11. Lewis, J.A.: Adv. Funct. Mater. 16, 2193 (2006)

    Article  Google Scholar 

  12. Skylar-Scott, M.A., Gunasekaran, S., Lewis, J.A.: Proc. Natl. Acad. Sci. U.S.A. 113, 6137 (2016)

    Article  Google Scholar 

  13. Lupan, O., Postica, V., Wolff, N., Polonskyi, O., Duppel, V., Kaidas, V., Lazari, E., Ababii, N., Faupel, F., Kienle, L., Adelung, R.: Small 13, 1602868 (Weinheim an der Bergstrasse, Germany) (2017)

    Article  Google Scholar 

  14. Lupan, O., Postica, V., Cretu, V., Wolff, N., Duppel, V., Kienle, L., Adelung, R.: Phys. Status Solidi RRL 10, 260 (2016)

    Article  Google Scholar 

  15. Lupan, O., Cretu, V., Postica, V., Ababii, N., Polonskyi, O., Kaidas, V., Schütt, F., Mishra, Y.K., Monaico, E., Tiginyanu, I., Sontea, V., Strunskus, T., Faupel, F., Adelung, R.: Sens. Actuators, B 224, 434 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the German Research Foundation (DFG) via the research unit FOR 2093 “Memristive devices for neuronal systems” through project A2. Additional funding was provided under the project “Hot End” (grant number: 16KN021247), by the Federal ministry for Economic Affairs and Energy. Moreover, this research was partly supported by the project Institutional inst-15.817.02.29A funded by the Government of the Republic of Moldova and by the Technical University of Moldova. Dr. Oleg Lupan acknowledges the Alexander von Humboldt Foundation for the research fellowship for experienced researchers 3-3MOL/1148833 STP at the Institute for Materials Science, Kiel University, Germany. The authors would like to thank J. Bahr for the technical assistance and Prof. Tiginyanu for fruitful scientific discussion.

Conflict of Interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Siebert or O. Lupan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siebert, L., Terasa, M.I., Ababii, N., Lupan, O., Adelung, R. (2020). 3D-Printed Sensor Array of Semiconducting Oxides. In: Tiginyanu, I., Sontea, V., Railean, S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31866-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31865-9

  • Online ISBN: 978-3-030-31866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics