Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 135))

  • 400 Accesses

Abstract

Summary and comparison of state-of-the-art approaches in the fields of scene recognition, part-based object recognition, and view planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Locations can stand for pure position or for full poses in the 2-D plane.

  2. 2.

    The objective function that is derived from this model has already been discussed in Sect. 1.1.3.

References

  1. Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)

    Article  Google Scholar 

  2. Blodow, N., Goron, L.C., Marton, Z.C., Pangercic, D., Rühr, T., Tenorth, M., Beetz, M.: Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4263–4270. IEEE (2011)

    Google Scholar 

  3. Bronshtein, I., Semendyayev, K., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Chen, S., Li, Y., Wang, W., Zhang, J.: Active Sensor Planning for Multiview Vision Tasks, vol. 1. Springer, Berlin (2008)

    Book  Google Scholar 

  5. Connolly, C.: The determination of next best views. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 432–435. IEEE (1985)

    Google Scholar 

  6. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision, pp. 428–441. Springer, Berlin (2006)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Dogar, M.R., Koval, M.C., Tallavajhula, A., Srinivasa, S.S.: Object search by manipulation. Auton. Robot. 36(1–2), 153–167 (2014)

    Article  Google Scholar 

  9. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  11. Eidenberger, R., Grundmann, T., Schneider, M., Feiten, W., Fiegert, M., Wichert, G.v., Lawitzky, G.: Scene analysis for service robots. In: Towards Service Robots for Everyday Environments, pp. 181–213. Springer, Berlin (2012)

    Google Scholar 

  12. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  13. Fergus, R.: Convolutional neural networks and computer vision. http://videolectures.net/site/normal_dl/tag=1051690/deeplearning2016_fergus_neural_networks_01.pdf (2016)

  14. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. CVPR 2003, vol. 2, pp. II–II. IEEE (2003)

    Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)

    Google Scholar 

  16. Grauman, K., Leibe, B.: Visual object recognition. Synth. Lect. Artif. Intell. Mach. Learn. 5(2), 1–181 (2011)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Krainin, M., Curless, B., Fox, D.: Autonomous generation of complete 3d object models using next best view manipulation planning. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5031–5037. IEEE (2011)

    Google Scholar 

  19. Kriegel, S., Rink, C., Bodenmuller, T., Narr, A., Suppa, M., Hirzinger, G.: Next-best-scan planning for autonomous 3d modeling. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2850–2856. IEEE (2012)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  21. Kunze, L., Doreswamy, K.K., Hawes, N.: Using qualitative spatial relations for indirect object search. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 163–168. IEEE (2014)

    Google Scholar 

  22. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  23. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008)

    Article  Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  25. Mitchell, T.M.: Machine Learning, International edn. McGraw-Hill, New York (1997)

    Google Scholar 

  26. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  27. Potthast, C., Sukhatme, G.S.: A probabilistic framework for next best view estimation in a cluttered environment. J. Vis. Commun. Image Represent. 25(1), 148–164 (2014)

    Article  Google Scholar 

  28. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, Third International edn. Prentice Hall Press, Upper Saddle River (2010)

    Google Scholar 

  29. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science + Business Media, Berlin (2008)

    Book  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  31. Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed objects and parts. Int. J. Comput. Vis. 77(1–3), 291–330 (2008)

    Article  Google Scholar 

  32. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media, Berlin (2010)

    MATH  Google Scholar 

  33. Torralba, A.: Learning to see. http://videolectures.net/site/normal_dl/tag=1051692/deeplearning2016_torralba_learning_see_01.pdf (2016)

  34. Toya, G., Stephan, M.: Detection of structured objects with a range camera. Ph.D. Thesis, ETH Zürich, Zürich (2008)

    Google Scholar 

  35. Vasquez-Gomez, J.I., Sucar, L.E., Murrieta-Cid, R.: View planning for 3d object reconstruction with a mobile manipulator robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 4227–4233. IEEE (2014)

    Google Scholar 

  36. Weisstein, E.W.: Complete graph — a Wolfram Web Resource. http://mathworld.wolfram.com/CompleteGraph.html. Accessed 01 March 2018

  37. Weisstein, E.W.: Star graph — a Wolfram Web Resource. http://mathworld.wolfram.com/StarGraph.html. Accessed 01 March 2018

  38. Weisstein, E.W.: Tree — a Wolfram Web Resource. http://mathworld.wolfram.com/Tree.html. Accessed 01 March 2018

  39. Ye, Y., Tsotsos, J.K.: Sensor planning for 3d object search. Comput. Vis. Image Underst. 73(2), 145–168 (1999)

    Article  Google Scholar 

  40. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene cnns. arXiv:1412.6856 (2014)

  41. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Meißner .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meißner, P. (2020). Related Work. In: Indoor Scene Recognition by 3-D Object Search. Springer Tracts in Advanced Robotics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-31852-9_2

Download citation

Publish with us

Policies and ethics