Skip to main content

Protection of the Dentin-Pulp Complex

  • Chapter
  • First Online:
Modern Operative Dentistry

Abstract

The adequate protection of the pulp-dentin complex is important to maintain the pulp vitality. Different factors can cause alterations on the pulp tissues, which will react through various mechanisms. The dentist must be able to understand those factors and assess the pulp condition, creating a diagnostic hypothesis and prognostics about the tooth. The knowledge about the available cleaning agents and protective materials is important to perform the different techniques for protection of the complex, depending on the preparation depth and proximity of the pulpal chamber. All restorative materials have a potential harmful effect over the pulp tissue. Therefore, it should never be applied in directly contact with the cells. The use of a more biocompatible material can maintain cell viability and stimulate the natural protective mechanisms, such as the cellular differentiation and dentin bridge formation. However, the dentin tissue can by itself protect the pulp, and the clinical determination of its remaining is paramount for the decision about the use or not of an additional protective material. This chapter helps the reader to understand the different aspects related to the decision of performing or not a protective technique as well how exactly it should be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alptekin T, Ozer F, Unlu N, Cobanoglu N, Blatz MB. In vivo and in vitro evaluations of microleakage around class I amalgam and composite restorations. Oper Dent. 2010;35:641–8. https://doi.org/10.2341/10-065-L.

    Article  PubMed  Google Scholar 

  2. Anusavice KJ. Phillips: dental materials. In: Elsevier. 11th ed; 2005.

    Google Scholar 

  3. Aranha A, Giro E, Souza P, Hebling J, De Souza Costa C. Effect of curing regime on the cytotoxicity of resin-modified glass-ionomer lining cements applied to an odontoblast-cell line. Dent Mater. 2006;22:864–9. https://doi.org/10.1016/j.dental.2005.11.015.

    Article  PubMed  Google Scholar 

  4. Araujo MAM, Valera MC. Tratamento clínico dos traumatismos dentários. São Paulo: Artes Médicas; 1999.

    Google Scholar 

  5. Asgary S, Eghbal MJ, Parirokh M, Ghanavati F, Rahimi H. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:609–14. https://doi.org/10.1016/j.tripleo.2008.06.006.

    Article  PubMed  Google Scholar 

  6. Assed S, Silva LAB. Pulpotomia. In: Leonardo MR, editor. Endodontia Trat canais radiculares princípios técnicos e biológicos. São Paulo: Artes Médicas; 2008. p. 49–66.

    Google Scholar 

  7. Avery JK. Polpa. In: Bhaskar SN, editor. Histol e Embriol Orban. 10th ed. São Paulo: Artes Médicas; 1989. p. 174–5.

    Google Scholar 

  8. Baratieri LN. Dentística. Procedimentos preventivos e restauradores. 2nd ed. São Paulo: Santos; 1993.

    Google Scholar 

  9. Baratieri LN, Mondelli J, Francischone CE. Curetagem pulpar como opção de tratamento conservador. Rev Gaúcha Odontol. 1985;33:295–302.

    Google Scholar 

  10. Baratieri LN, Monteiro S, Caldeira de Andrada MA. Pulp curettage--surgical technique. Quintessence Int. 1989;20:285–93.

    PubMed  Google Scholar 

  11. Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J Endod. 2006;32:731–5. https://doi.org/10.1016/j.joen.2005.12.008.

    Article  PubMed  Google Scholar 

  12. Baume LJ, Holz J. Long term clinical assessment of direct pulp capping. Int Dent J. 1981;31:251–60.

    PubMed  Google Scholar 

  13. Bergenholtz G, Horsted-Bindslev P, Reit C. Endodontia. Rio de Janeiro: Guanabara Koogan; 2006.

    Google Scholar 

  14. Berry FA, Parker SD, Rice D, Muñoz CA. Microleakage of amalgam restorations using dentin bonding system primers. Am J Dent. 1996;9:174–8.

    PubMed  Google Scholar 

  15. Bjørndal L, Darvann T. A light microscopic study of odontoblastic and non-odontoblastic cells involved in tertiary dentinogenesis in well-defined cavitated carious lesions. Caries Res. 1999;33:50–60. https://doi.org/10.1159/000016495.

    Article  PubMed  Google Scholar 

  16. Bjørndal L, Darvann T, Thylstrup A. A quantitative light microscopic study of the odontoblast and subodontoblastic reactions to active and arrested enamel caries without cavitation. Caries Res. 1998;32:59–69. https://doi.org/10.1159/000016431.

    Article  PubMed  Google Scholar 

  17. Bjørndal L. The caries process and its effect on the pulp: the science is changing and so is our understanding. J Endod. 2008;34:S2–5. https://doi.org/10.1016/j.joen.2008.02.037.

    Article  PubMed  Google Scholar 

  18. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139:305–15; quiz 305–15. https://doi.org/10.14219/jada.archive.2008.0160.

    Article  PubMed  Google Scholar 

  19. Bortoluzzi EA, Broon NJ, Bramante CM, Consolaro A, Garcia RB, de Moraes IG, et al. Mineral trioxide aggregate with or without calcium chloride in pulpotomy. J Endod. 2008;34:172–5. https://doi.org/10.1016/j.joen.2007.09.015.

    Article  PubMed  Google Scholar 

  20. Boutsioukis C, Noula G, Lambrianidis T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J Endod. 2008;34:1239–42. https://doi.org/10.1016/j.joen.2008.07.018.

    Article  PubMed  Google Scholar 

  21. Brännstrom M. Dentin and pulp in restorative dentistry. London: Wolfe; 1981.

    Google Scholar 

  22. Brännström M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent. 1984;9:57–68.

    PubMed  Google Scholar 

  23. Brännström M, Johnson G. Effects of various conditioners and cleaning agents on prepared dentin surfaces: a scanning electron microscopic investigation. J Prosthet Dent. 1974;31:422–30.

    PubMed  Google Scholar 

  24. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater. 2008;24:90–101. https://doi.org/10.1016/j.dental.2007.02.009.

    Article  PubMed  Google Scholar 

  25. Briso ALF, Rahal V, Mestrener SR, Dezan Junior E. Biological response of pulps submitted to different capping materials. Braz Oral Res. 2006;20:219–25. https://doi.org/10.1590/S1806-83242006000300007.

    Article  PubMed  Google Scholar 

  26. Busato ALS. Dentística: Filosofia, conceitos e prática clínica. 1st ed. São Paulo: Artes Médicas; 2005.

    Google Scholar 

  27. Busato ALS, Hernandez PAG, Macedo RP. Dentística: restaurações estéticas. 1st ed. São Paulo: Artes Médicas; 2002.

    Google Scholar 

  28. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TRP. The constitution of mineral trioxide aggregate. Dent Mater. 2005;21:297–303. https://doi.org/10.1016/j.dental.2004.05.010.

    Article  PubMed  Google Scholar 

  29. Camp JH. Diagnosis dilemmas in vital pulp therapy: treatment for the toothache is changing, especially in young. immature teeth J Endod. 2008;34:S6–12. https://doi.org/10.1016/j.joen.2008.03.020.

    Article  PubMed  Google Scholar 

  30. Carneiro FC, Nadanovsky P. Dentística ultraconservativa: Fundamentos e técnicas de tratamento da cárie em dentina. São Paulo: Santos; 2003.

    Google Scholar 

  31. Carvalho CN, de Oliveira Bauer JR, Loguercio AD, Reis A. Effect of ZOE temporary restoration on resin-dentin bond strength using different adhesive strategies. J Esthet Restor Dent 2007;19:144–152.; discussion 153. https://doi.org/10.1111/j.1708-8240.2007.00087.x.

    PubMed  Google Scholar 

  32. Ten Cate AR. Histologia oral, desenvolvimento, estrutura e função. 5th ed. São Paulo: Mosby; 2005.

    Google Scholar 

  33. Chambers IG. The role and methods of pulp testing in oral diagnosis: a review. Int Endod J. 1982;15:1–15.

    PubMed  Google Scholar 

  34. Charlton DG, Moore BK, Swartz ML. In vitro evaluation of the use of resin liners to reduce microleakage and improve retention of amalgam restorations. Oper Dent. 1992;17:112–9.

    PubMed  Google Scholar 

  35. Chong WF, Swartz ML, Phillips RW. Displacement of cement bases by amalgam condensation. J Am Dent Assoc. 1967;74:97–102.

    PubMed  Google Scholar 

  36. Cohen S, Hargreaves KM. Caminhos da polpa. 9th ed. Rio de Janeiro: Elsevier Editora; 2007.

    Google Scholar 

  37. Consolaro A. Alterações pulpares: correlações clínico-radiográficas e microscópicas. In: Leonardo MR, Leal JM, editors. Endodontia Trat canais radiculares. 3rd ed. São Paulo: Panamericana; 1998. p. 41–61.

    Google Scholar 

  38. Costa CAS, Teixeira HM, Nascimento ABL. Presente e futuro dos forradores e capeadores pulpares. In: Cardoso RJA, Gonçalves EAN, editors. Dentística/Laser. São Paulo: Artes Médicas; 2002. p. 75–93.

    Google Scholar 

  39. Costa CAS. Compatibilidade biológica do ionômero de vidro fotopolimerizável (Vitremer 3M). Avaliação histológica dos seus efeitos sobre dentina e tecido pulpar em dentes de rato. Rev Odontol USP. 1996;10:257–63.

    Google Scholar 

  40. Costa CAS, Hebling J, Campos EA, Lessa FCR, Oliveira CF. Repercussões dos procedimentos operatórios e técnicas sobre o complexo dentino-pulpar. In: Porto CLA, Pereirra JC, Netto CA, editors. Cariol Grup Bras Profr Dentística. São Paulo: Artes Médicas; 2008. p. 151–95.

    Google Scholar 

  41. Costa CA, Vaerten MA, Edwards CA, Hanks CT. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater. 1999;15:434–41. https://doi.org/10.1016/S0109-5641(99)00071-8.

    Article  PubMed  Google Scholar 

  42. Cox CF. Biocompatibility of dental materials in the absence of bacterial infection. Oper Dent. 1987;12:146–52.

    PubMed  Google Scholar 

  43. Cox CF, Keall CL, Keall HJ, Ostro E, Bergenholtz G. Biocompatibility of surface-sealed dental materials against exposed pulps. J Prosthet Dent. 1987;57:1–8.

    PubMed  Google Scholar 

  44. Cox CF, Sübay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent. 1996;21:4–11.

    PubMed  Google Scholar 

  45. Dammaschke T, Leidinger J, Schafer E. Long-term evaluation of direct pulp capping--treatment outcomes over an average period of 6.1 years. Clin Oral Investig. 2009;14:559–67. https://doi.org/10.1007/s00784-009-0326-9.

    Article  PubMed  Google Scholar 

  46. Dammaschke T, Gerth HUV, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater. 2005;21:731–8. https://doi.org/10.1016/j.dental.2005.01.019.

    Article  PubMed  Google Scholar 

  47. De Deus QD. Endodontia. 5th ed. Rio de Janeiro: Medsi; 1992.

    Google Scholar 

  48. Diamon RD, Stanley HR, Swerdlow H. Reparative dentin formation resulting from cavity preparation. J Prosthet Dent. 1966;16:1127–34. https://doi.org/10.1016/0022-3913(66)90180-6.

    Article  Google Scholar 

  49. Dörfer CE, Staehle HJ, Wurst MW, Duschner H, Pioch T. The nanoleakage phenomenon: influence of different dentin bonding agents, thermocycling and etching time. Eur J Oral Sci. 2000;108:346–51. https://doi.org/10.1034/j.1600-0722.2000.108004346.x.

    Article  PubMed  Google Scholar 

  50. Duque C, Hebling J, Smith AJ, Giro EMA, Oliveira MF, De Souza Costa CA. Reactionary dentinogenesis after applying restorative materials and bioactive dentin matrix molecules as liners in deep cavities prepared in nonhuman primate teeth. J Oral Rehabil. 2006;33:452–61. https://doi.org/10.1111/j.1365-2842.2005.01585.x.

    Article  PubMed  Google Scholar 

  51. Eidelman E, Finn SB, Koulourides T. Remineralization of carious dentin treated with calcium hydroxide. J Dent Child. 1965;32:218–25.

    PubMed  Google Scholar 

  52. Eikenberg S, Vandre R. Comparison of digital dental X-ray systems with self-developing film and manual processing for endodontic file length determination. J Endod. 2000;26:65–7.

    PubMed  Google Scholar 

  53. Estrela C. Ciência Endodôntica. São Paulo: Artes Médicas; 2004.

    Google Scholar 

  54. Fairbourn DR, Charbeneau GT, Loesche WJ. Effect of improved Dycal and IRM on bacteria in deep carious lesions. J Am Dent Assoc. 1980;100:547–52.

    PubMed  Google Scholar 

  55. Farah JW, Clark AE, Mohsein M, Thomas PA. Effect of cement base thicknesses on MOD amalgam restorations. J Dent Res. 1983;62:109–11. https://doi.org/10.1177/00220345830620020301.

    Article  PubMed  Google Scholar 

  56. Fejerskov O, Kidd E. Cárie dentária: A doença e seu tratamento clínico. São Paulo: Santos; 2007.

    Google Scholar 

  57. Felton DA, Bergenholtz G, Kanoy BE. Evaluation of the desensitizing effect of Gluma Dentin Bond on teeth prepared for complete-coverage restorations. Int J Prosthodont. 1991;4:292–8.

    PubMed  Google Scholar 

  58. Ferracane JL, Cooper PR, Smith AJ. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? Odontology. 2010;98:2–14. https://doi.org/10.1007/s10266-009-0116-5.

    Article  PubMed  Google Scholar 

  59. Ferris DM, Baumgartner JC. Perforation repair comparing two types of mineral trioxide aggregate. J Endod. 2004;30:422–4. https://doi.org/10.1097/00004770-200406000-00011.

    Article  PubMed  Google Scholar 

  60. Filler SJ, Lazarchik DA, Givan DA, Retief DH, Heaven TJ. Shear bond strengths of composite to chlorhexidine-treated enamel. Am J Dent. 1994;7:85–8.

    PubMed  Google Scholar 

  61. Foley J, Evans D, Blackwell A. Partial caries removal and cariostatic materials in carious primary molar teeth: a randomised controlled clinical trial. Br Dent J. 2004;197:697–701. https://doi.org/10.1038/sj.bdj.4811865.

    Article  PubMed  Google Scholar 

  62. Francischone C. Efeitos de alguns agentes de limpeza sobre a dentina, observado através de microscopia eletrônica de varredura. Estomat Cult. 1984;14:49–56.

    Google Scholar 

  63. Francischone C. Avaliação clínico e radiográfica, feita a curto e longo prazo, de uma técnica de pulpotomia em função da idade do paciente, do grupo de dentes e da propedêutica. [Bauru]: Faculdade de Odontologia de Bauru. Universidade de São Paulo; 1978.

    Google Scholar 

  64. Fridland M, Rosado R. MTA solubility: a long term study. J Endod. 2005;31:376–9. https://doi.org/10.1097/01.DON.0000140566.97319.3e.

    Article  PubMed  Google Scholar 

  65. Fruits TJ, Khajotia SS, Nicholson JW. Biologic considerations. Summitt’s fundam oper dent. 2nd ed. Chicago: Quintessence; 2013. p. 1–36.

    Google Scholar 

  66. Garone Netto N, Carvalho RCR, Russo E, Sobral MAP, Luz MAAC. Proteção do complexo dentina-polpa. In: Garone Netto N, editor. Introdução à Dentística Restauradora. São Paulo: Editora Santos; 2003. p. 133–66.

    Google Scholar 

  67. Garrocho-Rangel A, Flores H, Silva-Herzog D, Hernandez-Sierra F, Mandeville P, Pozos-Guillen AJ. Efficacy of EMD versus calcium hydroxide in direct pulp capping of primary molars: a randomized controlled clinical trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107:733–8. https://doi.org/10.1016/j.tripleo.2008.12.017.

    Article  Google Scholar 

  68. Granath LE, Hagman G. Experimental pulpotomy in human bicuspids with reference to cutting technique. Acta Odontol Scand. 1971;29:155–63. https://doi.org/10.3109/00016357109026511.

    Article  PubMed  Google Scholar 

  69. Gwinnett AJ, Tay F. Early and intermediate time response of the dental pulp to an acid etch technique in vivo. Am J Dent. 1998;11:S35–44.

    PubMed  Google Scholar 

  70. Hanks CT, Strawn SE, Wataha JC, Craig RG. Cytotoxic effects of resin components on cultured mammalian fibroblasts. J Dent Res. 1991;70:1450–5.

    PubMed  Google Scholar 

  71. Hasheminia SM, Feizi G, Razavi SM, Feizianfard M, Gutknecht N, Mir M. A comparative study of three treatment methods of direct pulp capping in canine teeth of cats: a histologic evaluation. Lasers Med Sci. 2008;25:9–15. https://doi.org/10.1007/s10103-008-0584-9.

    Article  PubMed  Google Scholar 

  72. Hebling J, Giro EMA, Costa CAS. Human pulp response after an adhesive system application in deep cavities. J Dent. 1999;27:557–64. https://doi.org/10.1016/S0300-5712(99)00034-2.

    Article  PubMed  Google Scholar 

  73. Heithersay GS. Calcium hydroxide in the treatment of pulpless teeth with associated pathology. J Br Endod Soc. 1975;8:74–93.

    PubMed  Google Scholar 

  74. Hilton TJ. Keys to clinical success with pulp capping: a review of the literature. Oper Dent. 2009;34:615–25.

    PubMed  PubMed Central  Google Scholar 

  75. Hilton TJ. Cavity sealers, liners, and bases: current philosophies and indications for use. Oper Dent. 1996;21:134–46.

    PubMed  Google Scholar 

  76. Hinoura K, Moore BK, Phillips RW. Tensile bond strength between glass ionomer cements and composite resins. J Am Dent Assoc. 1987;114:167–72.

    PubMed  Google Scholar 

  77. Holland R, de Souza V. Clinical diagnosis and indication for treatment of inflamed dental pulp. Rev Assoc Paul Cir Dent. 1970;24:188–93.

    PubMed  Google Scholar 

  78. Holland R, Souza V, Russo MC. Tratamento conservador da polpa dental. Ars Curandi Odont. 1975;2:3–17.

    Google Scholar 

  79. Hollinger J, Wong ME. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:594–606.

    PubMed  Google Scholar 

  80. Hormati AA, Fuller JL. The fracture strength of amalgam overlying base materials. J Prosthet Dent. 1980;43:52–7.

    PubMed  Google Scholar 

  81. Huang FM, Chang YC. Cytotoxicity of dentine-bonding agents on human pulp cells in vitro. Int Endod J. 2002;35:905–9. https://doi.org/10.1111/j.1365-2591.2010.01779.x.

    Article  PubMed  Google Scholar 

  82. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endod. 2006;32:193–7. https://doi.org/10.1016/j.joen.2005.10.043.

    Article  PubMed  Google Scholar 

  83. Jafarzadeh H, Udoye CI, Kinoshita J. The application of tooth temperature measurement in endodontic diagnosis: a review. J Endod. 2008;34:1435–40. https://doi.org/10.1016/j.joen.2008.09.011.

    Article  PubMed  Google Scholar 

  84. Kanca J 3rd. Replacement of a fractured incisor fragment over pulpal exposure: a long-term case report. Quintessence Int. 1996;27:829–32.

    PubMed  Google Scholar 

  85. Karjalainen S. Secondary and reparative dentin formation. In: Linde A, editor. Dentin dentinogenes. Boca Raton: CRC Press; 1984. p. 107–20.

    Google Scholar 

  86. Katritzky AR, Wang M, Wilkerson CR, Yang H. A novel approach to substituted 2 H -azirines. J Org Chem. 2003;68:9105–8. https://doi.org/10.1021/jo034472i.

    Article  PubMed  Google Scholar 

  87. Khocht A, Janal M, Harasty L, Chang KM. Comparison of direct digital and conventional intraoral radiographs in detecting alveolar bone loss. J Am Dent Assoc. 2003;134:1468–75.

    PubMed  Google Scholar 

  88. Krejci I, Lutz F. Mixed class V restorations: the potential of a dentine bonding agent. J Dent. 1990;18:263–70. doi:0300-5712(90)90026-B [pii]

    PubMed  Google Scholar 

  89. Kuttler Y. Classification of dentine into primary, secondary, and tertiary. Oral Surg Oral Med Oral Pathol. 1959;12:996–1001. https://doi.org/10.1016/0030-4220(59)90207-5.

    Article  PubMed  Google Scholar 

  90. Lan WH, Lan WC, Wang TM, Lee YL, Tseng WY, Lin CP, et al. Cytotoxicity of conventional and modified glass ionomer cements. Oper Dent. 2003;28:251–9.

    PubMed  Google Scholar 

  91. Lee HL Jr, Orlowski JA, Scheidt GC, Lee JR. Effects of acid etchants on dentin. J Dent Res. 1973;52:1228–33.

    PubMed  Google Scholar 

  92. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19:541–4. https://doi.org/10.1016/S0099-2399(06)81282-3.

    Article  PubMed  Google Scholar 

  93. Leksell E, Ridell K, Cvek M, Mejare I. Pulp exposure after stepwise versus direct complete excavation of deep carious lesions in young posterior permanent teeth. Endod Dent Traumatol. 1996;12:192–6.

    PubMed  Google Scholar 

  94. Leonardo MR. Endodontia: tratamento de canais radiculares: princípios técnicos e biológicos. São Paulo: Artes Médicas; 2008.

    Google Scholar 

  95. Leonardo MR, Leal JM. Endodontia. São Paulo: Panamericana; 1998.

    Google Scholar 

  96. Lohmann Soares IM, Soares IJ, Holland R. Immediate effect of the action of various rotary instruments and curets used in pulpotomy. Histological evaluation in dog teeth. Rev Esp Endod. 1986;4:3–9.

    Google Scholar 

  97. Lopes HP, Siqueira JF Jr. Endodontia: Biologia e técnica. Rio de Janeiro: Médica e Científica Ltd; 1999.

    Google Scholar 

  98. Magloire H, Bouvier M, Joffre A. Odontoblast response under carious lesions. Proc Finn Dent Soc. 1992;88(Suppl 1):257–74.

    PubMed  Google Scholar 

  99. Manders CA, Garcia-Godoy F, Barnwell GM. Effect of a copal varnish, ZOE or glass ionomer cement bases on microleakage of amalgam restorations. Am J Dent. 1990;3:63–6.

    PubMed  Google Scholar 

  100. Martins LRM. Estudo de propriedades mecânicas (resistência ao cisalhamento, por puncionamento, à compressão e tração diametral) de 7 cimentos utilizados como base protetora de restaurações. [Bauru]: Faculdade de Odontologia de Bauru. Universidade de São Paulo; 1986.

    Google Scholar 

  101. Matos AB. Estudo “in vitro” de diversos agentes utilizados para limpeza de superfície dentinária. Rev Pós-gr fac Odont USP. 1995;2:37–44.

    Google Scholar 

  102. Matthews B, Andrew D, Ames TR. The functional properties of intradental nerves: dentin-pulp complex. Chicago: Quintessences Publisching Co; 1996.

    Google Scholar 

  103. Meiers JC, Kresin JC. Cavity disinfectants and dentin bonding. Oper Dent. 1996;21:153–9.

    PubMed  Google Scholar 

  104. Menezes R, Bramante CM, Letra A, Carvalho VGG, Garcia RB. Histologic evaluation of pulpotomies in dog using two types of mineral trioxide aggregate and regular and white Portland cements as wound dressings. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2004;98:376–9. https://doi.org/10.1016/j.tripleo.2004.03.008.

    Article  Google Scholar 

  105. Mertz-Fairhurst EJ, Curtis JW Jr, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc. 1998;129:55–66.

    PubMed  Google Scholar 

  106. Meryon SD. The model cavity method incorporating dentine. Int Endod J. 1988;21:79–84.

    PubMed  Google Scholar 

  107. Mjör IA. Pulp dentin biology in restorative dentistry. Chicago: Quintessence; 2002.

    Google Scholar 

  108. Mjör IA, Fejerskov O. Embriologia e histologia humana. São Paulo: Panamericana; 1990.

    Google Scholar 

  109. Mjör IA, Ferrari M. Pulp-dentin biology in restorative dentistry. Part 6: reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques. Quintessence Int. 2002;33:35–63.

    PubMed  Google Scholar 

  110. Modena KC da S, Casas-Apayco LC, Atta MT, Costa CA de S, Hebling J, Sipert CR, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci. 2009;17:544–54. https://doi.org/10.1590/S1678-77572009000600002.

    Article  Google Scholar 

  111. Mondelli J. Proteção do complexo dentinopulpar. São Paulo: Artes Médicas; 1998.

    Google Scholar 

  112. Mondelli J. Dentística operatória. 4th ed. São Paulo: Sarvier; 1979.

    Google Scholar 

  113. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, et al. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82:136–40. https://doi.org/10.1177/154405910308200212.

    Article  PubMed  Google Scholar 

  114. Nagem FH. Adesão – adesividade em Odontologia. OdontoMaster – Estética. 1995;2:5–17.

    Google Scholar 

  115. Nagem Filho H, de Abreu Poletto LT, Vieira LC, Pereira JC. Chemical properties and biocompatibility of Ca(OH)2. Rev Odontol da Univ Sao Paulo. 1987;1:20–3.

    Google Scholar 

  116. Navarro MFL, Pascotto RC. Cimentos de ionômero de vidro. 1st ed. São Paulo: Artes Médicas: Série EAP-APCD; 1998.

    Google Scholar 

  117. van North R. Introduction to dental materials. 4th ed. London: Mosby; 2007.

    Google Scholar 

  118. Orhan AI, Oz FT, Ozcelik B, Orhan K. A clinical and microbiological comparative study of deep carious lesion treatment in deciduous and young permanent molars. Clin Oral Investig. 2008;12:369–78. https://doi.org/10.1007/s00784-008-0208-6.

    Article  PubMed  Google Scholar 

  119. Pameijer CH, Wendt SL. Microleakage of “surface-sealing” materials. Am J Dent. 1995;8:43–6.

    PubMed  Google Scholar 

  120. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400–13. https://doi.org/10.1016/j.joen.2009.09.009.

    Article  PubMed  Google Scholar 

  121. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part I: chemical, physical, and antibacterial properties. J Endod. 2010;36:16–27. https://doi.org/10.1016/j.joen.2009.09.006.

    Article  PubMed  Google Scholar 

  122. Pashley DH. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med. 1996;7:104–33. https://doi.org/10.1177/10454411960070020101.

    Article  PubMed  Google Scholar 

  123. Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. J Dent. 1997;25:355–72. https://doi.org/10.1016/S0300-5712(96)00057-7.

    Article  PubMed  Google Scholar 

  124. Pashley DH, Horner JA, Brewer PD. Interactions of conditioners on the dentin surface. Oper Dent. 1992;Suppl 5:137–50.

    PubMed  Google Scholar 

  125. Perdigão J. Dentin bonding: variables related to the clinical situation and the substrate treatment. Dent Mat. 2010;26:e24–37.

    Google Scholar 

  126. Perdigão J, Denehy GE, Swift EJ. Effects of chlorhexidine on dentin surfaces and shear bond strengths. Am J Dent. 1994;7:81–4.

    PubMed  Google Scholar 

  127. Pereira JC, Berbert A, Segala AD. Long term clinical and radiographic evaluation of teet submitted to indirect pulp capping. J Dent Res. 1997;76(Spec. I):Abstract n. 1328.

    Google Scholar 

  128. Pereira JC, Furuse AY, Benetti AR, Hannas AR, Canova GC, Costa LC, et al. Proteção do complexo dentinopulpar. In: Busato AL, editor. Dentística Filos Conceitos e prática clínica. São Paulo: Artes Médicas; 2005. p. 147–201.

    Google Scholar 

  129. Pereira JC, Manfio AP, Franco EB, Lopes ES. Clinical evaluation of Dycal under amalgam restorations. Am J Dent. 1990;3:67–70.

    PubMed  Google Scholar 

  130. Pesce HF, Medeiros JMF, Capriglione V, Santos M. Avaliação do teste elétrico pulpar quando alicado nos diferentes grupos dentais. Odontol Mod. 1990;17:7–9.

    Google Scholar 

  131. Peters DD, Augsburger RA. In vitro cold transference of bases and restorations. J Am Dent Assoc. 1981;102:642–6.

    PubMed  Google Scholar 

  132. Petersson K, Soderstrom C, Kiani-Anaraki M, Levy G. Evaluation of the ability of thermal and electrical tests to register pulp vitality. Endod Dent Traumatol. 1999;15:127–31.

    PubMed  Google Scholar 

  133. Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.

    PubMed  Google Scholar 

  134. Reston EG, de Souza Costa CA. Scanning electron microscopy evaluation of the hard tissue barrier after pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA) or ProRoot MTA. Aust Endod J. 2009;35:78–84. https://doi.org/10.1111/j.1747-4477.2008.00131.x.

    Article  PubMed  Google Scholar 

  135. Ribeiro CC, Baratieri LN, Perdigão J, Baratieri NM, Ritter AV. A clinical, radiographic, and scanning electron microscopic evaluation of adhesive restorations on carious dentin in primary teeth. Quintessence Int. 1999;30:591–9.

    PubMed  Google Scholar 

  136. Ricketts D, Kidd E, Innes NPT, Clarkson JE. Complete or ultraconservative removal of decayed tissue in unfilled teeth. In: Ricketts D, editor. Cochrane Database Syst Rev. Chichester: Wiley; 2006. p. CD003808. https://doi.org/10.1002/14651858.CD003808.pub2.

    Chapter  Google Scholar 

  137. Rickoff B, Trowbridge H, Baker J, Fuss Z, Bender IB. Effects of thermal vitality tests on human dental pulp. J Endod. 1988;14:482–5. https://doi.org/10.1016/S0099-2399(88)80104-3.

    Article  PubMed  Google Scholar 

  138. Ritter A, Baratieri LN, Monteiro JS. Caderno de Dentistica proteção do complexo dentina-polpa. São Paulo: Santos; 2003.

    Google Scholar 

  139. Roberson TM, Heymann H, Swift EJ, Sturdevant CM. Sturdevant’s art and science of operative dentistry. London: Mosby/Elsevier; 2006.

    Google Scholar 

  140. Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater. 2008;24:149–64. https://doi.org/10.1016/j.dental.2007.04.007.

    Article  PubMed  Google Scholar 

  141. Rode SM, Cavalcanti BN. Proteção do complexo dentina-polpa: o papel do hidróxido de cálcio e da hibridização. In: Cardoso RJA, Gonçalves EAN, editors. Dentística/Laser. São Paulo: Artes Médicas; 2002. p. 57–74.

    Google Scholar 

  142. Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005;31:97–100. https://doi.org/10.1097/01.DON.0000133155.04468.41.

    Article  PubMed  Google Scholar 

  143. Schupbach P, Lutz F, Finger WJ. Closing of dentinal tubules by Gluma desensitizer. Eur J Oral Sci. 1997;105:414–21.

    PubMed  Google Scholar 

  144. Shayegan A, Petein M, Vanden Abbeele A. The use of beta-tricalcium phosphate, white MTA, white Portland cement and calcium hydroxide for direct pulp capping of primary pig teeth. Dent Traumatol. 2009;25:413–9. https://doi.org/10.1111/j.1600-9657.2009.00799.x.

    Article  PubMed  Google Scholar 

  145. Silva e Souza Jr MH, Correa ILV. Microleakage: influence of cavity moisture. J Dent Res. 1997; 76:312.

    Google Scholar 

  146. Smith AJ. Reparative processes in dentin and pulp. In: Addy M, Embery G, Edgar WM, editors. Tooth wear sensit. London: Dunitz; 2000. p. 53–66.

    Google Scholar 

  147. Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol. 1995;39:273–80.

    PubMed  Google Scholar 

  148. Smith AJ, Matthews JB, Hall RC. Transforming growth factor-beta1 (TGF-beta1) in dentine matrix. Ligand activation and receptor expression. Eur J Oral Sci. 1998;106(Suppl):179–84.

    PubMed  Google Scholar 

  149. Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ. 2003;67:678–89.

    PubMed  Google Scholar 

  150. Smulson MH. Classification and diagnosis of pulpal pathoses. Dent Clin N Am. 1984;28:699–723.

    PubMed  Google Scholar 

  151. de Souza Costa CA, Hebling J, Randall RC. Human pulp response to resin cements used to bond inlay restorations. Dent Mater. 2006;22:954–62. https://doi.org/10.1016/j.dental.2005.10.007.

    Article  PubMed  Google Scholar 

  152. De Souza Costa CA, Giro EMA, Do Nascimento ABL, Teixeira HM, Hebling J. Short-term evaluation of the pulpo-dentin complex response to a resin-modified glass-ionomer cement and a bonding agent applied in deep cavities. Dent Mater. 2003;19:739–46. https://doi.org/10.1016/S0109-5641(03)00021-6.

    Article  Google Scholar 

  153. de Souza Costa CA, Hebling J, Garcia-Godoy F, Hanks CT. In vitro cytotoxicity of five glass-ionomer cements. Biomaterials. 2003;24:3853–8. https://doi.org/10.1016/S0142-9612(03)00253-9.

    Article  PubMed  Google Scholar 

  154. De Souza Costa CA, Teixeira HM, Lopes Do Nascimento AB, Hebling J. Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J Biomed Mater Res – Part B Appl Biomater. 2007;81:175–84. https://doi.org/10.1002/jbm.b.30651.

    Google Scholar 

  155. Sowden JA. A preliminary report on the recalcification of carious dentin. J Dent Child. 1956;23:187–8.

    Google Scholar 

  156. Stanley HR. Human pulp response to restorative dental procedures. 2nd ed. Florida: Starter Printing; 1981.

    Google Scholar 

  157. Stanley HR, Pereira JC, Spiegel E, Broom C, Schultz M. The detection and prevalence of reactive and physiologic sclerotic dentin, reparative dentin and dead tracts beneath various types of dental lesions according to tooth surface and age. J Oral Pathol. 1983;12:257–89.

    Google Scholar 

  158. Stanley HR, White CL, McCray L. The rate of tertiary (reparative) dentine formation in the human tooth. Oral Surg Oral Med Oral Pathol. 1966;21:180–9.

    PubMed  Google Scholar 

  159. Taira M, Wakasa K, Yamaki M, Matsui A. Heat generated when cutting natural tooth enamel, composite resin model tooth enamel and glass-ceramic Typodont tooth. Hiroshima Daigaku Shigaku Zasshi. 1990;22:210–2.

    PubMed  Google Scholar 

  160. Tam LE, Pulver E, McComb D, Smith DC. Physical properties of calcium hydroxide and glass-ionomer base and lining materials. Dent Mater. 1989;5:145–9. https://doi.org/10.1016/0109-5641(89)90001-8.

    Article  PubMed  Google Scholar 

  161. Tay FR, Gwinnett AJ, Pang KM, Wei SH. Structural evidence of a sealed tissue interface with a total-etch wet-bonding technique in vivo. J Dent Res. 1994;73:629–36.

    PubMed  Google Scholar 

  162. Thompson VT, Craig RG, Curro FA, Green WS, Ship JA. Treatment of deep carious lesions by complete excavation or partial removal. J Am Dent Assoc. 2008;139:705–12. https://doi.org/10.14219/jada.archive.2008.0252.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Torabinejad M, Hong C, MC Donald F, Pittford T. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349–53. https://doi.org/10.1016/S0099-2399(06)80967-2.

    Article  PubMed  Google Scholar 

  164. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25:197–205. https://doi.org/10.1016/S0099-2399(99)80142-3.

    Article  PubMed  Google Scholar 

  165. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod. 2010;36:190–202. https://doi.org/10.1016/j.joen.2009.09.010.

    Article  PubMed  Google Scholar 

  166. Torres CRG, Carvalho JC, Valera MC, Araújo MAM. Materiais ósseo-indutores para o complexo dentino pulpar. Rev Fac Odontol São José dos Campos. 2000;3:88–96.

    Google Scholar 

  167. Trowbridge HO. Pathogenesis of pulpitis resulting from dental caries. J Endod. 1981;7:52–60.

    PubMed  Google Scholar 

  168. Trowbridge HO, Kim S. Pulp development, structure and function. In: Cohen S, Burns RC, editors. Pathways pulp. 6th ed. St. Louis: Mosby; 1994. p. 296–336.

    Google Scholar 

  169. Tuna D, Ölmez A. Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J. 2008;41:273–8. https://doi.org/10.1111/j.1365-2591.2007.01339.x.

    Article  PubMed  Google Scholar 

  170. Tziafas D, Alvanou A, Panagiotakopoulos N, Smith AJ, Lesot H, Komnenou A, et al. Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Arch Oral Biol. 1995;40:883–93. https://doi.org/10.1016/0003-9969(95)00069-2.

    Article  PubMed  Google Scholar 

  171. Tziafas D, Belibasakis G, Veis A, Papadimitriou S. Dentin regeneration in vital pulp therapy: design principles. Adv Dent Res. 2001;15:96–100. https://doi.org/10.1177/08959374010150012501.

    Article  PubMed  Google Scholar 

  172. Tziafas D, Smith A, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28:77–92. https://doi.org/10.1016/S0300-5712(99)00047-0.

    Article  PubMed  Google Scholar 

  173. Tziafas D. Experimental bacterial anachoresis in dog dental pulps capped with calcium hydroxide. J Endod. 1989;15:591–5. https://doi.org/10.1016/S0099-2399(89)80157-8.

    Article  PubMed  Google Scholar 

  174. Uribe Echevarria JU. Operatoria dental: Ciencia y pratica. Madrid: Avances Medico-dentales; 1990.

    Google Scholar 

  175. Vieira DF, Mondelli J. Fracture strength of class II amalgam restorations condensed over protective bases. J Prosthet Dent. 1973;30:166–72.

    PubMed  Google Scholar 

  176. Weine FS. Tratamento endodôntico. 5th ed. São Paulo: Editora Santos; 1998.

    Google Scholar 

  177. Weisleder R, Yamauchi S, Caplan DJ, Trope M, Teixeira FB. The validity of pulp testing. A Clinical Study J Am Dent Assoc. 2009;140:1013–7. https://doi.org/10.14219/jada.archive.2009.0312.

    Article  PubMed  Google Scholar 

  178. Weyne S. Cariologia, a cárie como uma doença infecciosa e transmissível. In: Baratieri LN, editor. Dentística – procedimentos Prev e restauradores. 3rd ed. Rio de Janeiro: Santos; 1990. p. 1–42.

    Google Scholar 

  179. Yap AU, Shah KC, Loh ET, Sim SS, Tan CC. Influence of eugenol-containing temporary restorations on bond strength of composite to dentin. Oper Dent. 2001;26:556–61.

    PubMed  Google Scholar 

  180. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rocha Gomes Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Mello Torres, A.C., Gomes, A.P.M., Kubo, C.H., Torres, C.R.G. (2020). Protection of the Dentin-Pulp Complex. In: Torres, C. (eds) Modern Operative Dentistry. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-31772-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31772-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31771-3

  • Online ISBN: 978-3-030-31772-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics