Skip to main content

The Application of Deep Learning in Marine Sciences

  • Chapter
  • First Online:
Deep Learning: Algorithms and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 865))

Abstract

Ecological studies are increasingly using video image data to study the distribution and behaviour of organisms. Particularly in marine sciences cameras are utilised to access underwater environments. Up till now image data has been processed by human observers which is costly and often represents repetitive mundane work. Deep learning techniques that can automatically classify objects can increase the speed and the amounts of data that can be processed. This ultimately will make image processing in ecological studies more cost effective, allowing studies to invest in larger, more robust sampling designs. As such, deep learning will be a game changer for ecological research helping to improve the quality and quantity of the data that can be collected. Within this chapter we introduce two case studies to demonstrate the application of deep learning techniques in marine ecological studies. The first example demonstrates the use of deep learning in the detection and classification of an important underwater ecosystem in the Mediterranean (Posidonia oceanica seagrass meadows), the other showcases the automatic identification of several jellyfish species in coastal areas. Both applications showed high levels of accuracy in the detection and identification of the study organisms, which represents encouraging results for the applicability of these methodologies in marine ecological studies. Despite its potential, deep learning has yet not been widely adopted in ecological studies. Information technologists and natural scientists alike need to more actively collaborate to move forward in this field of science. Cost-effective data collection solutions are desperately needed in a time when large amounts of data are required to detect and adapt to global environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caughlan, L.: Cost considerations for long-term ecological monitoring. Ecol. Indic. 1(2), 123–134 (2001)

    Article  Google Scholar 

  2. Barrio Froján, C.R.S., Cooper, K.M., Bolam, S.G.: Towards an integrated approach to marine benthic monitoring. Mar. Pollut. Bull. 104(1–2), 20–28 (2016)

    Google Scholar 

  3. Del Vecchio, S., Fantinato, E., Silan, G., Buffa, G.: Trade-offs between sampling effort and data quality in habitat monitoring. Biodivers. Conserv. 28(1), 55–73 (2018)

    Article  Google Scholar 

  4. Bennett, M., Acott, C., Richardson, K., Bowen, S., Smart, D., Smith, P., Sharp, F., Bryson, P., Goble, S.: Recreational technical diving part 1: an introduction to technical diving methods and activities. J. S. Pac. Underw. Med. Soc. Eur. Underw. Baromedical Soc. 43(4), 86–93 (2013)

    Google Scholar 

  5. Hissmann, K., Schauer, J.: Manned submersible JAGO. J. Large-Scale Res. Facil. JLSRF 3, A110 (2017)

    Article  Google Scholar 

  6. Sagalevich, A.M.: 30 years experience of Mir submersibles for the ocean operations. Deep Sea Res. Part II Top. Stud. Ocean. 155(2017), 83–95 (2017)

    Google Scholar 

  7. Rosenkranz, G.E., Byersdorfer, S.C.: Video scallop survey in the eastern Gulf of Alaska, USA. Fish. Res. 69(1), 131–140 (2004)

    Article  Google Scholar 

  8. Lambert, G.I., Jennings, S., Hinz, H., Murray, L.G., Parrott, L., Kaiser, M.J., Hiddink, J.G.: A comparison of two techniques for the rapid assessment of marine habitat complexity. Methods Ecol. Evol. 4(3), 226–235 (2013)

    Article  Google Scholar 

  9. Santana-Garcon, J., Newman, S.J., Harvey, E.S.: Development and validation of a mid-water baited stereo-video technique for investigating pelagic fish assemblages. J. Exp. Mar. Biol. Ecol. 452, 82–90 (2014)

    Article  Google Scholar 

  10. Gallo, N.D., Cameron, J., Hardy, K., Fryer, P., Bartlett Douglas, H., Levin Lisa, A.: Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: influence of productivity and depth on epibenthic and scavenging communities. Deep Sea Res. Part I Ocean. Res. Pap. 99, 119–133 (2015)

    Google Scholar 

  11. Sheehan, E., Vaz, S., Pettifer, E., Foster, N., Nancollas, S., Cousens, S., Holmes, L., Facq, J.-V., Germain, G., Attrill, M.: An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance. Methods Ecol. Evol. 7(07) (2016)

    Google Scholar 

  12. Langlois, T.J., Harvey, E.S., Fitzpatrick, B., Meeuwig, J.J., Shedrawi, G., Watson, D.L.: Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat. Biol. 9(2), 155–168 (2010)

    Article  Google Scholar 

  13. Holmes, T.H., Wilson, S.K., Travers, M.J., Langlois, T.J., Evans, R.D., Moore, G.I., Douglas, R.A., Shedrawi, G., Harvey, E.S., Hickey, K.: A comparison of visual- and stereo-video based fish community assessment methods in tropical and temperate marine waters of Western Australia. Limnol. Ocean. Methods 11(7), 337–350 (2013)

    Article  Google Scholar 

  14. Martin-Abadal, M., Guerrero-Font, E., Bonin-Font, F., Gonzalez-Cid, Y.: Deep semantic segmentation in an AUV for online posidonia oceanica meadows identification. IEEE Access 6, 60956–60967 (2018)

    Article  Google Scholar 

  15. Gray, P.C., Fleishman, A.B., Klein, D.J., McKown, M.W., Bézy, V.S., Lohmann, K.J., Johnston, D.W.: A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol., 1–11 (2018). In Review

    Google Scholar 

  16. Kotta, J., Valdivia, N., Kutser, T., Toming, K., Rätsep, M., Orav-Kotta, H.: Predicting the cover and richness of intertidal macroalgae in remote areas: a case study in the Antarctic Peninsula. Ecol. Evol. 8(17), 9086–9094 (2018)

    Article  Google Scholar 

  17. Wäldchen, J., Mäder, P.: Machine learning for image based species identification. Methods Ecol. Evol. 9(11), 2216–2225 (2018)

    Article  Google Scholar 

  18. Weinstein, B.G.: Scene-specific convolutional neural networks for video-based biodiversity detection. Methods Ecol. Evol. 9(6), 1435–1441 (2018)

    Article  Google Scholar 

  19. Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., Fortson, L.: Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol. Evol., 1–12 (2018)

    Google Scholar 

  20. Mieszkowska, N., Sugden, H., Firth, L.B., Hawkins, S.J.: The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2025) (2014)

    Google Scholar 

  21. Gouraguine, A., Moranta, J., Ruiz-Frau, A., Hinz, H, Reñones, O., Ferse, S.C.A., Jompa, J., Smith, D.J.: Citizen science in data and resource-limited areas: a tool to detect long-term ecosystem changes. Plos One 14(1), e0210007 (2019)

    Google Scholar 

  22. Cun, L., Cun, L., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396–404 (1990)

    Google Scholar 

  23. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, Sept 2014

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. ArXiv:1512.03385, Dec 2015

  26. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks, Aug 2016

    Google Scholar 

  27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. ArXiv:1409.4842, Sept 2014

  28. Chollet, F.: Xception: deep learning with depthwise separable convolutions. ArXiv:1610.02357, Oct 2016

  29. Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70(350), 320–328 (1975)

    Article  Google Scholar 

  30. Diaz-Almela, E., Duarte, C.: Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Technical report, European Commission (2008)

    Google Scholar 

  31. Ruiz-Frau, A., Gelcich, S., Hendriks, I.E., Duarte, C.M., Marbà, N.: Current state of seagrass ecosystem services: research and policy integration. Ocean. Coast. Manag. 149, 107–115 (2017)

    Article  Google Scholar 

  32. Marba, N., Duarte, C.: Mediterranean warming triggers seagrass (posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16(8), 2366–2375 (2010)

    Article  Google Scholar 

  33. Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E.T., Fraschetti, S., Gristina, M., Knittweis, L., Martin, C.S., Pergent, G., Alagna, A., Badalamenti, F., Garofalo, G., Gerakaris, V., Pace, M.L., Pergent-Martini, C., Salomidi, M.: Seagrass meadows (posidonia oceanica) distribution and trajectories of change. Scientific reports (2015)

    Google Scholar 

  34. y Royo, C.L., Pergent, G., Pergent-Martini, C., Casazza, G.: Seagrass (posidonia oceanica) monitoring in western mediterranean: implications for management and conservation. Environ. Monit. Assess. 171, 365–380 (2010)

    Article  Google Scholar 

  35. Sagawa, T., Komatsu, T.: Simulation of seagrass bed mapping by satellite images based on the radiative transfer model. Ocean. Sci. J. 50(2), 335–342 (2015)

    Article  Google Scholar 

  36. Montefalcone, M., Rovere, A., Parravicini, V., Albertelli, G., Morri, C., Bianchi, C.N.: Evaluating change in seagrass meadows: a time-framed comparison of side scan sonar maps. Aquat. Bot. 104, 204–212 (2013)

    Article  Google Scholar 

  37. Vasilijevic, A., Miskovic, N., Vukic, Z., Mandic, F.: Monitoring of seagrass by lightweight AUV: a posidonia oceanica case study surrounding Murter island of Croatia. In: Mediterranean Conference on Control and Automation, pp. 758–763, June 2014

    Google Scholar 

  38. Rende, F.S., Irving, A.D., Lagudi, A., Bruno, F., Scalise, S., Cappa, P., Montefalcone, M., Bacci, T., Penna, M., Trabucco, B., Di Mento, R., Cicero, A.M.: Pilot application of 3D underwater imaging techniques for mapping Posidonia oceanica (L.) delile meadows. ISPRS - Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci., 177–181 (2015)

    Google Scholar 

  39. Bonin-Font, F., Burguera, A., Lisani, J.-L.: Visual discrimination and large area mapping of posidonia oceanica using a lightweight AUV. IEEE Access 5, 24479–24494 (2017)

    Article  Google Scholar 

  40. Gonzalez-Cid, Y., Burguera, A., Bonin-Font, F., Matamoros, A.: Machine learning and deep learning strategies to identify posidonia meadows in underwater images. IEEE Oceans, 1–5 (2017)

    Google Scholar 

  41. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv:1603.07285, Mar 2016

  42. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015

    Google Scholar 

  43. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. arXiv:1612.07695, Dec 2016

  44. Buja, A., Stuetzle, W., Shen, Y.: Loss functions for binary class probability estimation and classification: structure and applications. Technical report, Department of Statistics of University of Pennsylvania, Jan 2005

    Google Scholar 

  45. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, Dec 2014

  46. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Li, F.-F.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, June 2009

    Google Scholar 

  48. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation. arXiv:1708.06020, Aug 2017

  49. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Neural Networks: Tricks of the Trade (2012)

    Google Scholar 

  50. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Proceedings of the Fifteenth International Conference on Machine Learning, Apr 2001

    Google Scholar 

  51. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Int. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Article  Google Scholar 

  52. European Commission: Assessment of jellyfish socioeconomic impacts in the mediterranean: implications for management, horizon 2020, May 2017

    Google Scholar 

  53. Condon, R.H., Graham, W.M., Duarte, C.M., Pitt, K.A., Lucas, C.H., Haddock, S.H.D., Sutherland, K.R., Robinson, K.L., Dawson, M.N., Decker, M.B., Mills, C.E., Purcell, J.E., Malej, A., Mianzan, H., Uye, S.-I., Gelcich, S., Madin, L.P.: Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62(2), 160–169 (2012)

    Article  Google Scholar 

  54. Richardson, A.J., Bakun, A., Hays, G.C., Gibbons, M.J.: The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evol. 24(6), 312–322 (2009)

    Article  Google Scholar 

  55. Condon, R.H., Duarte, C.M., Pitt, K.A., Robinson, K.L., Lucas, C.H., Sutherland, K.R., Mianzan, H.W., Bogeberg, M., Purcell, J.E., Decker, M.B., Uye, S.-I., Madin, L.P., Brodeur, R.D., Haddock, S.H.D., Malej, A., Parry, G.D., Eriksen, E., Quinones, J., Acha, M., Harvey, M., Arthur, J.M., Graham, W.M.: Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. USA 110(3), 1000–1005 (2013)

    Article  Google Scholar 

  56. United Nations: Factsheet: people and oceans, pp. 1–2. https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (2017)

  57. Macrokanis, C., Hall, N., Mein, J.: Irukandji syndrome in Northern Western Australia: an emerging health problem. Med. J. Aust. 181, 699–702 (2004)

    Article  Google Scholar 

  58. Fenner, P.J., Lippmann, J., Gershwin, L.A.: Fatal and nonfatal severe jellyfish stings in Thai waters. J. Travel. Med. 17(2), 133–138 (2010)

    Article  Google Scholar 

  59. Purcell, J.E., Ichi Uye, S.-I., Tseng Lo, W.-T.: Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar. Ecol. Prog. Ser. 350, 153–174 (2007)

    Article  Google Scholar 

  60. Purcell, J.E., Baxter, E.J., Fuentes, V.L.: Jellyfish as products and problems of aquaculture. In: Advances in Aquaculture Hatchery Technology, pp. 404–430. Elsevier (2013)

    Google Scholar 

  61. Merceron, M., Le Fevre-Lehoerff, G., Bizouarn, Y., Kempf, M.: Fish and jellyfish in Brittany (France). Equinoxe 56, 6–8 (1995)

    Google Scholar 

  62. Lee, J.H., Choi, H.W., Chae, J., Kim, D.S., Lee, S.B.: Performance analysis of intake screens in power plants on mass impingement of marine organisms. Ocean. Polar Res. 28, 385–393 (2006)

    Article  Google Scholar 

  63. Matsumura, K., Kamiya, K., Yamashita, K., Hayashi, F., Watanabe, I., Murao, Y., Miyasaka, H., Kamimura, N., Nogami, M.: Genetic polymorphism of the adult medusae invading an electric power station and wild polyps of Aurelia aurita in Wakasa Bay, Japan. J. Mar. Biol. Assoc. UK 85(3), 563–568 (2005)

    Article  Google Scholar 

  64. Ferraris, M., Berline, L., Lombard, F., Guidi, L., Elineau, A., Mendoza-Vera, J.M., Lilley, M.K.S., Taillandier, V., Gorsky, G.: Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34(10), 874–885 (2012)

    Article  Google Scholar 

  65. Barrado, C., Fuentes, J.A., Salamí, E., Royo, P., Olariaga, A.D., López, J., Fuentes, V.L., Gili, J.M., Pastor, E.: Jellyfish monitoring on coastlines using remote piloted aircraft. In: IOP Conference Series: Earth and Environmental Science, vol. 17, p. 12195 (2014)

    Google Scholar 

  66. Kim, Donghoon, Shin, J.U., Kim, H., Kim, H., Lee, D., Lee, S.M., Myung, H.: Development and experimental testing of an autonomous jellyfish detection and removal robot system. Int. J. Control Autom. Syst. 14(1), 312–322 (2016)

    Article  Google Scholar 

  67. Matsuura, F., Fujisawa, N., Ishikawa: Detection and removal of jellyfish using underwater image analysis. J. Vis. 10(3), 259–260 (2007)

    Google Scholar 

  68. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence, Feb 2016

    Google Scholar 

  69. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

  70. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  71. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, pp. III–1310–III–1318 (2013)

    Google Scholar 

  72. Lin, T.-Y., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Lawrence Zitnick, C.: Microsoft coco: common objects in context. In: ECCV (2014)

    Google Scholar 

  73. Tzutalin, D.: Labelimg. https://github.com/tzutalin/labelImg (2018)

  74. Zhu, M.: Recall, precision and average precision. Technical report, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada, Sept 2004

    Google Scholar 

  75. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  76. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  77. Martin-Abadal, M.: Video: online posidonia oceanica segmentation. http://srv.uib.es/po-identification/, May 2018

  78. Martin-Abadal, M.: Video: jellyfish object detection. http://srv.uib.es/jellyfish-object-detection/, Dec 2018

Download references

Acknowledgements

This work is partially supported by Ministry of Economy and Competitiveness (AEI, FEDER, UE), under contracts TIN2017-85572-P, DPI2017-86372-C3-1-R. H Hinz was supported by the Ramón y Cajal Fellowship (grant by the Ministerio de Economía y Competitividad de España and the Conselleria dEducació, Cultura i Universitats Comunidad Autonoma de las Islas Baleares). We would like to thank Charlotte Jennings for her help in identifying and labelling jellyfish in underwater images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Martin-Abadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin-Abadal, M., Ruiz-Frau, A., Hinz, H., Gonzalez-Cid, Y. (2020). The Application of Deep Learning in Marine Sciences. In: Pedrycz, W., Chen, SM. (eds) Deep Learning: Algorithms and Applications. Studies in Computational Intelligence, vol 865. Springer, Cham. https://doi.org/10.1007/978-3-030-31760-7_7

Download citation

Publish with us

Policies and ethics