Skip to main content

Functional Brain Network Estimation Based on Weighted BOLD Signals for MCI Identification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

  • 2388 Accesses

Abstract

Functional brain network (FBN) provides an important way to reveal the inherent organization of the brain and explore informative biomarkers of neurological disorders. Due to its increasing potential in clinical applications, many methods, such as Pearson’s correlation and sparse representation, have been proposed in the recent years for FBN estimation. In practice, before the FBN estimation, a complex data preprocessing pipeline is involved to improve the quality of the data (i.e., fMRI signals in this paper), in which the scrubbing is an optional scheme for removing some “bad” time points (or volumes) from the fMRI signals according to a hard threshold related to, for example, the frame-wise displacement (FD). However, on one hand, the direct removal of time points may cause the loss of some useful information in data, and, on the other hand, the remaining time points may be not clean enough. In addition, with a fixed threshold, different numbers of volumes are generally scrubbed for different subjects, resulting in a bias or inconsistency in the estimated FBNs. To address these issues, in this paper, we develop a motion-dependent FBN estimation scheme by weighting the fMRI signals according to the values of FD. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. To verify the effectiveness of the proposed approach, we conduct experiments to identify subjects with mild cognitive impairment (MCI) from normal controls on a publicly available dataset. The experimental results show that our newly estimated FBNs can significantly improve the final classification accuracy.

The first author of this student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biswa, S., Friston, K.J., Penny, W.D.: Gradient-based MCMC samplers for dynamic causal modelling. Neuroimage 125, 1107–1118 (2016)

    Article  Google Scholar 

  • Brunetti, M., et al.: Human brain activation elicited by the localization of sounds delivering at attended or unattended positions: an fMRI/MEG study. Cogn. Process. 7, 116–117 (2006)

    Article  Google Scholar 

  • Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  MATH  Google Scholar 

  • Dijk, K.R.A.V., Sabuncu, M.R., Buckner, R.L.: The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012)

    Article  Google Scholar 

  • Fan, Y., Browndyke, J.N.: MCI diagnosis via manifold based classification of functional brain networks. Alzheimers & Dementia J. Alzheimers Assoc. 6, S16–S16 (2010)

    Article  Google Scholar 

  • Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003)

    Article  Google Scholar 

  • Gotts, S.J., Simmons, W.K., Milbury, L.A., Wallace, G.L., Cox, R.W., Martin, A.: Fractionation of social brain circuits in autism spectrum disorders. Brain 135, 2711–2725 (2012)

    Article  Google Scholar 

  • Huang, S., et al.: Learning brain connectivity of Alzheimer’s disease from neuroimaging data. In: Advances in Neural Information Processing Systems 22: Conference on Neural Information Processing Systems 2009. Proceedings of a Meeting Held, Vancouver, British Columbia, Canada, 7–10 December 2009, pp. 808–816 (2009)

    Google Scholar 

  • Bijsterbosch, J., Smith, S.M., Beckmann, C.F.: Introduction to Resting State fMRI Functional Connectivity (2017)

    Google Scholar 

  • Jin, H.L., et al.: Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788 (2010)

    Article  Google Scholar 

  • Li, W., Wang, Z., Zhang, L., Qiao, L., Shen, D.: Remodeling Pearson’s correlation for functional brain network estimation and autism spectrum disorder identification. Front. Neuroinform. 11, 55 (2017)

    Article  Google Scholar 

  • Liu, F., Wee, C.-Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-task feature selection for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 308–315. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_39

    Chapter  Google Scholar 

  • Mckhannab, G.M., et al.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease (2011)

    Google Scholar 

  • Michael, G.: Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430 (2008)

    Google Scholar 

  • Murphy, K., Birn, R.M., Bandettini, P.A.: Resting-state FMRI confounds and cleanup. Neuroimage 80, 349–359 (2013)

    Article  Google Scholar 

  • Peng, J., Wang, P., Zhou, N., Zhu, J.: Partial correlation estimation by joint sparse regression models. J. Am. Stat. Assoc. 104, 735–746 (2009)

    Article  MathSciNet  Google Scholar 

  • Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI Data Analysis. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  • Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 63, 999 (2012)

    Article  Google Scholar 

  • Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014)

    Article  Google Scholar 

  • Qiao, L., Han, Z., Kim, M., Teng, S., Zhang, L., Shen, D.: Estimating functional brain networks by incorporating a modularity prior. Neuroimage 141, 399–407 (2016)

    Article  Google Scholar 

  • Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., Glymour, C.: Six problems for causal inference from fMRI. Neuroimage 49, 1545–1558 (2010)

    Article  Google Scholar 

  • Rosa, M.J., Portugal, L., Shawe-Taylor, J., Mourao-Miranda, J.: Sparse network-based models for patient classification using fMRI. In: 2013 3rd International Workshop on Pattern Recognition in Neuroimaging, (PRNI 2013), vol. 105, pp. 66–69 (2013)

    Google Scholar 

  • Smith, S.M., et al.: Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011)

    Article  Google Scholar 

  • Smith, S.M., et al.: Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013)

    Article  Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s Disease. PLoS Comput. Biol. 4, e1000100 (2008)

    Article  Google Scholar 

  • Theijea, C.G.M.D., Silva, S.L.D., Kamphuis, P.J., Garssen, J., Korte, S.M., Kraneveld, A.D.: Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol. 668, S70–S80 (2011)

    Article  Google Scholar 

  • Wee, C.Y., et al.: Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59, 2045–2056 (2012)

    Article  Google Scholar 

  • Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014)

    Article  Google Scholar 

  • Whittingstall, K., et al.: Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Brain Topogr. 21, 86 (2008)

    Article  Google Scholar 

  • Yamashita, O., Sato, M.A., Yoshioka, T., Tong, F., Kamitani, Y.: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. Neuroimage 42, 1414–1429 (2008)

    Article  Google Scholar 

  • Yan, C.G., et al.: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76, 183–201 (2013)

    Article  Google Scholar 

  • Yang, S., Ross, T.J., Zhang, Y., Stein, E.A., Yang, Y.: Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI. Neuroimage 27, 153–162 (2005)

    Article  Google Scholar 

  • Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D.: Correlation-weighted sparse group representation for brain network construction in MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 37–45. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_5

    Chapter  Google Scholar 

  • Zhou, L., Wang, L., Ogunbona, P.: Discriminative sparse inverse covariance matrix: application in brain functional network classification. In: Computer Vision and Pattern Recognition, pp. 3097–3104 (2014)

    Google Scholar 

Download references

Acknowledgement

We thank Lishan Qiao, Yining Zhang, Weikai Li and Limei Zhang for the help in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H. (2019). Functional Brain Network Estimation Based on Weighted BOLD Signals for MCI Identification. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics