Skip to main content

Automatic Inspection of Yarn Locations by Utilizing Histogram Segmentation and Monotone Hypothesis

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

  • 2400 Accesses

Abstract

We present an automatic method for the estimation of yarn locations in fabric images. The proposed method is based on histogram segmentation and a so-called monotone hypothesis which is a nonparametric statistical approach. In this method, accumulated partial derivatives histograms are statistically unimodal, which indicate the periodic structures of fabric images. Then, the monotone hypothesis is applied to divide the histograms into several segments. According to the maximum value and the minimum value of the histograms in each segment, the locations of yarn boundaries and yarn centers can be correspondingly estimated. The method reduces the influence of yarn random texture noise that comes from yarn hairiness, improving the accuracy of detection. Furthermore, compared with classical method based on image smoothing, the proposed method can avoid over-smoothing of the edges of yarns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, R., Gao, W., Li, Z., Gou, J., Zhang, J., Zhu, D.: Measuring thread densities of woven fabric using the Fourier transform. Fibres Text. East. Eur. 23(1), 35–40 (2015)

    Google Scholar 

  2. Pan, R., Zhang, J., Li, Z., Gao, W., Xu, B., Li, W.: Applying image analysis for automatic density measurement of high-tightness woven fabrics. Fibres Text. East. Eur. 24(2), 66–72 (2016)

    Article  Google Scholar 

  3. Zhang, J., Pan, R., Gao, W.: Automatic inspection of density in yarn-dyed fabrics by utilizing fabric light transmittance and Fourier analysis. Appl. Opt. 54(4), 966 (2015)

    Article  Google Scholar 

  4. He, F., Li, L., Xu, J.: Woven fabric density measure based on adaptive wavelets transform. J. Text. Res 28(2), 32–35 (2007)

    Google Scholar 

  5. Jing, J., Liu, S., Li, P., Li, Q., Liu, S., Jiang, M.: Automatic density detection of woven fabrics via wavelet transform. J. Inf. Comput. Sci. 11(8), 2559–2568 (2014)

    Article  Google Scholar 

  6. Technikova, L., Tunak, M.: Weaving density evaluation with the aid of image analysis. Fibres Text. East. Eur. 98(2), 74–79 (2013)

    Google Scholar 

  7. Pan, R., Gao, W., Liu, J., Wang, H.: Automatic inspection of woven fabric density of solid colour fabric density by the Hough transform. Fibres Text. East. Eur. 81(4), 46–51 (2010)

    Google Scholar 

  8. Zhang, J., Gao, W., Pan, R.: A backlighting method for accurate inspection of woven fabric density. Ind. Textila 68(1), 31–36 (2017)

    Article  Google Scholar 

  9. Pan, R., Liu, J., Gao, W.: Measuring linear density of threads in single system melange color fabrics with FCM algorithm. Color Res. Appl. 38(6), 456–462 (2013)

    Google Scholar 

  10. Zhang, J., Pan, R., Gao, W., Zhu, D.: Automatic inspection of yarn-dyed fabric density by mathematical statistics of sub-images. J. Text. Inst. 106(8), 823–834 (2015)

    Article  Google Scholar 

  11. Zheng, D., Wang, L.: Multi-scale density detection for yarn-dyed fabrics with deformed repeat patterns. Text. Res. J. 87(20), 2524–2540 (2017)

    Article  Google Scholar 

  12. Aldemir, E., Özdemir, H., Sarı, Z.: An improved gray line profile method to inspect the warp–weft density of fabrics. J. Text. Inst. 110(1), 105–116 (2019)

    Article  Google Scholar 

  13. Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: Automatic color palette. In IEEE International Conference on Image Processing 2005, vol. 2, pp. II–706. IEEE (2005)

    Google Scholar 

  14. Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: A nonparametric approach for histogram segmentation. IEEE Trans. Image Process. 16(1), 253–261 (2007)

    Article  MathSciNet  Google Scholar 

  15. Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: Automatic color palette. Inverse Probl. Imaging 1(2), 265–287 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lu, C., Xu, L., Jia, J.: Real-time contrast preserving decolorization. In: SIGGRAPH Asia 2012 Posters, p. 161. ACM, Singapore (2012)

    Google Scholar 

  17. Eduardo, B.C., Jan-Olof, E.: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, p. 967. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10268-4

    Book  Google Scholar 

  18. Le Hegarat-Mascle, S., Aldea, E., Vandoni, J.: Efficient evaluation of the number of false alarm criterion. EURASIP J. Image Video Process. 2019(1), 35 (2019)

    Article  Google Scholar 

  19. Rajaei, B., von Gioi, R.G., Morel, J.: From line segments to more organized gestalts. In: 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 137–140. IEEE (2016)

    Google Scholar 

  20. Miriam, A., Brunk, H.D., Ewing, G.M., Reid, W.T., Edward, S.S.: An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. 26(4), 641–647 (1955)

    Article  MathSciNet  Google Scholar 

  21. Desolneux, A., Moisah, L., Morel, J.M.: A grouping principle and four applications. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 508–513 (2003)

    Article  Google Scholar 

  22. Pan, R., Gao, W., Liu, J., Wang, H., Zhang, X.: Automatic detection of structure parameters of yarn-dyed fabric. Text. Res. J. 80(17), 1819–1832 (2010)

    Article  Google Scholar 

  23. Zheng, D.: A new method for automatic separation of fabric color. Text. Res. J. 85(14), 1520–1538 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 61872429, 61402290, 61472257 and 61772343); in part by the Natural Science Foundation of Guangdong (Grant 1714050003822); and in part by the Natural Science Foundation of Shenzhen (Grants JCYJ20170818091621856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Y., Luo, L. (2019). Automatic Inspection of Yarn Locations by Utilizing Histogram Segmentation and Monotone Hypothesis. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics